@inproceedings{wang-etal-2017-sentiment,
title = "Sentiment Lexicon Expansion Based on Neural {PU} Learning, Double Dictionary Lookup, and Polarity Association",
author = "Wang, Yasheng and
Zhang, Yang and
Liu, Bing",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1059",
doi = "10.18653/v1/D17-1059",
pages = "553--563",
abstract = "Although many sentiment lexicons in different languages exist, most are not comprehensive. In a recent sentiment analysis application, we used a large Chinese sentiment lexicon and found that it missed a large number of sentiment words in social media. This prompted us to make a new attempt to study sentiment lexicon expansion. This paper first poses the problem as a PU learning problem, which is a new formulation. It then proposes a new PU learning method suitable for our problem using a neural network. The results are enhanced further with a new dictionary-based technique and a novel polarity classification technique. Experimental results show that the proposed approach outperforms baseline methods greatly.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2017-sentiment">
<titleInfo>
<title>Sentiment Lexicon Expansion Based on Neural PU Learning, Double Dictionary Lookup, and Polarity Association</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yasheng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although many sentiment lexicons in different languages exist, most are not comprehensive. In a recent sentiment analysis application, we used a large Chinese sentiment lexicon and found that it missed a large number of sentiment words in social media. This prompted us to make a new attempt to study sentiment lexicon expansion. This paper first poses the problem as a PU learning problem, which is a new formulation. It then proposes a new PU learning method suitable for our problem using a neural network. The results are enhanced further with a new dictionary-based technique and a novel polarity classification technique. Experimental results show that the proposed approach outperforms baseline methods greatly.</abstract>
<identifier type="citekey">wang-etal-2017-sentiment</identifier>
<identifier type="doi">10.18653/v1/D17-1059</identifier>
<location>
<url>https://aclanthology.org/D17-1059</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>553</start>
<end>563</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Lexicon Expansion Based on Neural PU Learning, Double Dictionary Lookup, and Polarity Association
%A Wang, Yasheng
%A Zhang, Yang
%A Liu, Bing
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F wang-etal-2017-sentiment
%X Although many sentiment lexicons in different languages exist, most are not comprehensive. In a recent sentiment analysis application, we used a large Chinese sentiment lexicon and found that it missed a large number of sentiment words in social media. This prompted us to make a new attempt to study sentiment lexicon expansion. This paper first poses the problem as a PU learning problem, which is a new formulation. It then proposes a new PU learning method suitable for our problem using a neural network. The results are enhanced further with a new dictionary-based technique and a novel polarity classification technique. Experimental results show that the proposed approach outperforms baseline methods greatly.
%R 10.18653/v1/D17-1059
%U https://aclanthology.org/D17-1059
%U https://doi.org/10.18653/v1/D17-1059
%P 553-563
Markdown (Informal)
[Sentiment Lexicon Expansion Based on Neural PU Learning, Double Dictionary Lookup, and Polarity Association](https://aclanthology.org/D17-1059) (Wang et al., EMNLP 2017)
ACL