@inproceedings{cotterell-heigold-2017-cross,
title = "Cross-lingual Character-Level Neural Morphological Tagging",
author = "Cotterell, Ryan and
Heigold, Georg",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1078/",
doi = "10.18653/v1/D17-1078",
pages = "748--759",
abstract = "Even for common NLP tasks, sufficient supervision is not available in many languages {--} morphological tagging is no exception. In the work presented here, we explore a transfer learning scheme, whereby we train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together. Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cotterell-heigold-2017-cross">
<titleInfo>
<title>Cross-lingual Character-Level Neural Morphological Tagging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georg</namePart>
<namePart type="family">Heigold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Even for common NLP tasks, sufficient supervision is not available in many languages – morphological tagging is no exception. In the work presented here, we explore a transfer learning scheme, whereby we train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together. Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones.</abstract>
<identifier type="citekey">cotterell-heigold-2017-cross</identifier>
<identifier type="doi">10.18653/v1/D17-1078</identifier>
<location>
<url>https://aclanthology.org/D17-1078/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>748</start>
<end>759</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual Character-Level Neural Morphological Tagging
%A Cotterell, Ryan
%A Heigold, Georg
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F cotterell-heigold-2017-cross
%X Even for common NLP tasks, sufficient supervision is not available in many languages – morphological tagging is no exception. In the work presented here, we explore a transfer learning scheme, whereby we train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together. Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones.
%R 10.18653/v1/D17-1078
%U https://aclanthology.org/D17-1078/
%U https://doi.org/10.18653/v1/D17-1078
%P 748-759
Markdown (Informal)
[Cross-lingual Character-Level Neural Morphological Tagging](https://aclanthology.org/D17-1078/) (Cotterell & Heigold, EMNLP 2017)
ACL