@inproceedings{zhou-etal-2017-word,
title = "Word-Context Character Embeddings for {C}hinese Word Segmentation",
author = "Zhou, Hao and
Yu, Zhenting and
Zhang, Yue and
Huang, Shujian and
Dai, Xinyu and
Chen, Jiajun",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1079/",
doi = "10.18653/v1/D17-1079",
pages = "760--766",
abstract = "Neural parsers have benefited from automatically labeled data via dependency-context word embeddings. We investigate training character embeddings on a word-based context in a similar way, showing that the simple method improves state-of-the-art neural word segmentation models significantly, beating tri-training baselines for leveraging auto-segmented data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-etal-2017-word">
<titleInfo>
<title>Word-Context Character Embeddings for Chinese Word Segmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenting</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shujian</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyu</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiajun</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural parsers have benefited from automatically labeled data via dependency-context word embeddings. We investigate training character embeddings on a word-based context in a similar way, showing that the simple method improves state-of-the-art neural word segmentation models significantly, beating tri-training baselines for leveraging auto-segmented data.</abstract>
<identifier type="citekey">zhou-etal-2017-word</identifier>
<identifier type="doi">10.18653/v1/D17-1079</identifier>
<location>
<url>https://aclanthology.org/D17-1079/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>760</start>
<end>766</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word-Context Character Embeddings for Chinese Word Segmentation
%A Zhou, Hao
%A Yu, Zhenting
%A Zhang, Yue
%A Huang, Shujian
%A Dai, Xinyu
%A Chen, Jiajun
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F zhou-etal-2017-word
%X Neural parsers have benefited from automatically labeled data via dependency-context word embeddings. We investigate training character embeddings on a word-based context in a similar way, showing that the simple method improves state-of-the-art neural word segmentation models significantly, beating tri-training baselines for leveraging auto-segmented data.
%R 10.18653/v1/D17-1079
%U https://aclanthology.org/D17-1079/
%U https://doi.org/10.18653/v1/D17-1079
%P 760-766
Markdown (Informal)
[Word-Context Character Embeddings for Chinese Word Segmentation](https://aclanthology.org/D17-1079/) (Zhou et al., EMNLP 2017)
ACL
- Hao Zhou, Zhenting Yu, Yue Zhang, Shujian Huang, Xinyu Dai, and Jiajun Chen. 2017. Word-Context Character Embeddings for Chinese Word Segmentation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 760–766, Copenhagen, Denmark. Association for Computational Linguistics.