@inproceedings{huang-etal-2017-learning,
title = "Learning Fine-Grained Expressions to Solve Math Word Problems",
author = "Huang, Danqing and
Shi, Shuming and
Lin, Chin-Yew and
Yin, Jian",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1084/",
doi = "10.18653/v1/D17-1084",
pages = "805--814",
abstract = "This paper presents a novel template-based method to solve math word problems. This method learns the mappings between math concept phrases in math word problems and their math expressions from training data. For each equation template, we automatically construct a rich template sketch by aggregating information from various problems with the same template. Our approach is implemented in a two-stage system. It first retrieves a few relevant equation system templates and aligns numbers in math word problems to those templates for candidate equation generation. It then does a fine-grained inference to obtain the final answer. Experiment results show that our method achieves an accuracy of 28.4{\%} on the linear Dolphin18K benchmark, which is 10{\%} (54{\%} relative) higher than previous state-of-the-art systems while achieving an accuracy increase of 12{\%} (59{\%} relative) on the TS6 benchmark subset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2017-learning">
<titleInfo>
<title>Learning Fine-Grained Expressions to Solve Math Word Problems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danqing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuming</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chin-Yew</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a novel template-based method to solve math word problems. This method learns the mappings between math concept phrases in math word problems and their math expressions from training data. For each equation template, we automatically construct a rich template sketch by aggregating information from various problems with the same template. Our approach is implemented in a two-stage system. It first retrieves a few relevant equation system templates and aligns numbers in math word problems to those templates for candidate equation generation. It then does a fine-grained inference to obtain the final answer. Experiment results show that our method achieves an accuracy of 28.4% on the linear Dolphin18K benchmark, which is 10% (54% relative) higher than previous state-of-the-art systems while achieving an accuracy increase of 12% (59% relative) on the TS6 benchmark subset.</abstract>
<identifier type="citekey">huang-etal-2017-learning</identifier>
<identifier type="doi">10.18653/v1/D17-1084</identifier>
<location>
<url>https://aclanthology.org/D17-1084/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>805</start>
<end>814</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Fine-Grained Expressions to Solve Math Word Problems
%A Huang, Danqing
%A Shi, Shuming
%A Lin, Chin-Yew
%A Yin, Jian
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F huang-etal-2017-learning
%X This paper presents a novel template-based method to solve math word problems. This method learns the mappings between math concept phrases in math word problems and their math expressions from training data. For each equation template, we automatically construct a rich template sketch by aggregating information from various problems with the same template. Our approach is implemented in a two-stage system. It first retrieves a few relevant equation system templates and aligns numbers in math word problems to those templates for candidate equation generation. It then does a fine-grained inference to obtain the final answer. Experiment results show that our method achieves an accuracy of 28.4% on the linear Dolphin18K benchmark, which is 10% (54% relative) higher than previous state-of-the-art systems while achieving an accuracy increase of 12% (59% relative) on the TS6 benchmark subset.
%R 10.18653/v1/D17-1084
%U https://aclanthology.org/D17-1084/
%U https://doi.org/10.18653/v1/D17-1084
%P 805-814
Markdown (Informal)
[Learning Fine-Grained Expressions to Solve Math Word Problems](https://aclanthology.org/D17-1084/) (Huang et al., EMNLP 2017)
ACL