@inproceedings{golub-etal-2017-two,
    title = "Two-Stage Synthesis Networks for Transfer Learning in Machine Comprehension",
    author = "Golub, David  and
      Huang, Po-Sen  and
      He, Xiaodong  and
      Deng, Li",
    editor = "Palmer, Martha  and
      Hwa, Rebecca  and
      Riedel, Sebastian",
    booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D17-1087/",
    doi = "10.18653/v1/D17-1087",
    pages = "835--844",
    abstract = "We develop a technique for transfer learning in machine comprehension (MC) using a novel two-stage synthesis network. Given a high performing MC model in one domain, our technique aims to answer questions about documents in another domain, where we use no labeled data of question-answer pairs. Using the proposed synthesis network with a pretrained model on the SQuAD dataset, we achieve an F1 measure of 46.6{\%} on the challenging NewsQA dataset, approaching performance of in-domain models (F1 measure of 50.0{\%}) and outperforming the out-of-domain baseline by 7.6{\%}, without use of provided annotations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="golub-etal-2017-two">
    <titleInfo>
        <title>Two-Stage Synthesis Networks for Transfer Learning in Machine Comprehension</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">David</namePart>
        <namePart type="family">Golub</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Po-Sen</namePart>
        <namePart type="family">Huang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xiaodong</namePart>
        <namePart type="family">He</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Li</namePart>
        <namePart type="family">Deng</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Martha</namePart>
            <namePart type="family">Palmer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rebecca</namePart>
            <namePart type="family">Hwa</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sebastian</namePart>
            <namePart type="family">Riedel</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We develop a technique for transfer learning in machine comprehension (MC) using a novel two-stage synthesis network. Given a high performing MC model in one domain, our technique aims to answer questions about documents in another domain, where we use no labeled data of question-answer pairs. Using the proposed synthesis network with a pretrained model on the SQuAD dataset, we achieve an F1 measure of 46.6% on the challenging NewsQA dataset, approaching performance of in-domain models (F1 measure of 50.0%) and outperforming the out-of-domain baseline by 7.6%, without use of provided annotations.</abstract>
    <identifier type="citekey">golub-etal-2017-two</identifier>
    <identifier type="doi">10.18653/v1/D17-1087</identifier>
    <location>
        <url>https://aclanthology.org/D17-1087/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>835</start>
            <end>844</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Two-Stage Synthesis Networks for Transfer Learning in Machine Comprehension
%A Golub, David
%A Huang, Po-Sen
%A He, Xiaodong
%A Deng, Li
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F golub-etal-2017-two
%X We develop a technique for transfer learning in machine comprehension (MC) using a novel two-stage synthesis network. Given a high performing MC model in one domain, our technique aims to answer questions about documents in another domain, where we use no labeled data of question-answer pairs. Using the proposed synthesis network with a pretrained model on the SQuAD dataset, we achieve an F1 measure of 46.6% on the challenging NewsQA dataset, approaching performance of in-domain models (F1 measure of 50.0%) and outperforming the out-of-domain baseline by 7.6%, without use of provided annotations.
%R 10.18653/v1/D17-1087
%U https://aclanthology.org/D17-1087/
%U https://doi.org/10.18653/v1/D17-1087
%P 835-844
Markdown (Informal)
[Two-Stage Synthesis Networks for Transfer Learning in Machine Comprehension](https://aclanthology.org/D17-1087/) (Golub et al., EMNLP 2017)
ACL