@inproceedings{hui-etal-2017-pacrr,
title = "{PACRR}: A Position-Aware Neural {IR} Model for Relevance Matching",
author = "Hui, Kai and
Yates, Andrew and
Berberich, Klaus and
de Melo, Gerard",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1110",
doi = "10.18653/v1/D17-1110",
pages = "1049--1058",
abstract = "In order to adopt deep learning for information retrieval, models are needed that can capture all relevant information required to assess the relevance of a document to a given user query. While previous works have successfully captured unigram term matches, how to fully employ position-dependent information such as proximity and term dependencies has been insufficiently explored. In this work, we propose a novel neural IR model named PACRR aiming at better modeling position-dependent interactions between a query and a document. Extensive experiments on six years{'} TREC Web Track data confirm that the proposed model yields better results under multiple benchmarks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hui-etal-2017-pacrr">
<titleInfo>
<title>PACRR: A Position-Aware Neural IR Model for Relevance Matching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Hui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Yates</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Klaus</namePart>
<namePart type="family">Berberich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerard</namePart>
<namePart type="family">de Melo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In order to adopt deep learning for information retrieval, models are needed that can capture all relevant information required to assess the relevance of a document to a given user query. While previous works have successfully captured unigram term matches, how to fully employ position-dependent information such as proximity and term dependencies has been insufficiently explored. In this work, we propose a novel neural IR model named PACRR aiming at better modeling position-dependent interactions between a query and a document. Extensive experiments on six years’ TREC Web Track data confirm that the proposed model yields better results under multiple benchmarks.</abstract>
<identifier type="citekey">hui-etal-2017-pacrr</identifier>
<identifier type="doi">10.18653/v1/D17-1110</identifier>
<location>
<url>https://aclanthology.org/D17-1110</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1049</start>
<end>1058</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PACRR: A Position-Aware Neural IR Model for Relevance Matching
%A Hui, Kai
%A Yates, Andrew
%A Berberich, Klaus
%A de Melo, Gerard
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F hui-etal-2017-pacrr
%X In order to adopt deep learning for information retrieval, models are needed that can capture all relevant information required to assess the relevance of a document to a given user query. While previous works have successfully captured unigram term matches, how to fully employ position-dependent information such as proximity and term dependencies has been insufficiently explored. In this work, we propose a novel neural IR model named PACRR aiming at better modeling position-dependent interactions between a query and a document. Extensive experiments on six years’ TREC Web Track data confirm that the proposed model yields better results under multiple benchmarks.
%R 10.18653/v1/D17-1110
%U https://aclanthology.org/D17-1110
%U https://doi.org/10.18653/v1/D17-1110
%P 1049-1058
Markdown (Informal)
[PACRR: A Position-Aware Neural IR Model for Relevance Matching](https://aclanthology.org/D17-1110) (Hui et al., EMNLP 2017)
ACL