@inproceedings{cocarascu-toni-2017-identifying,
title = "Identifying attack and support argumentative relations using deep learning",
author = "Cocarascu, Oana and
Toni, Francesca",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1144",
doi = "10.18653/v1/D17-1144",
pages = "1374--1379",
abstract = "We propose a deep learning architecture to capture argumentative relations of attack and support from one piece of text to another, of the kind that naturally occur in a debate. The architecture uses two (unidirectional or bidirectional) Long Short-Term Memory networks and (trained or non-trained) word embeddings, and allows to considerably improve upon existing techniques that use syntactic features and supervised classifiers for the same form of (relation-based) argument mining.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cocarascu-toni-2017-identifying">
<titleInfo>
<title>Identifying attack and support argumentative relations using deep learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesca</namePart>
<namePart type="family">Toni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a deep learning architecture to capture argumentative relations of attack and support from one piece of text to another, of the kind that naturally occur in a debate. The architecture uses two (unidirectional or bidirectional) Long Short-Term Memory networks and (trained or non-trained) word embeddings, and allows to considerably improve upon existing techniques that use syntactic features and supervised classifiers for the same form of (relation-based) argument mining.</abstract>
<identifier type="citekey">cocarascu-toni-2017-identifying</identifier>
<identifier type="doi">10.18653/v1/D17-1144</identifier>
<location>
<url>https://aclanthology.org/D17-1144</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1374</start>
<end>1379</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying attack and support argumentative relations using deep learning
%A Cocarascu, Oana
%A Toni, Francesca
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F cocarascu-toni-2017-identifying
%X We propose a deep learning architecture to capture argumentative relations of attack and support from one piece of text to another, of the kind that naturally occur in a debate. The architecture uses two (unidirectional or bidirectional) Long Short-Term Memory networks and (trained or non-trained) word embeddings, and allows to considerably improve upon existing techniques that use syntactic features and supervised classifiers for the same form of (relation-based) argument mining.
%R 10.18653/v1/D17-1144
%U https://aclanthology.org/D17-1144
%U https://doi.org/10.18653/v1/D17-1144
%P 1374-1379
Markdown (Informal)
[Identifying attack and support argumentative relations using deep learning](https://aclanthology.org/D17-1144) (Cocarascu & Toni, EMNLP 2017)
ACL