@inproceedings{adel-schutze-2017-global,
title = "Global Normalization of Convolutional Neural Networks for Joint Entity and Relation Classification",
author = {Adel, Heike and
Sch{\"u}tze, Hinrich},
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1181/",
doi = "10.18653/v1/D17-1181",
pages = "1723--1729",
abstract = "We introduce globally normalized convolutional neural networks for joint entity classification and relation extraction. In particular, we propose a way to utilize a linear-chain conditional random field output layer for predicting entity types and relations between entities at the same time. Our experiments show that global normalization outperforms a locally normalized softmax layer on a benchmark dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="adel-schutze-2017-global">
<titleInfo>
<title>Global Normalization of Convolutional Neural Networks for Joint Entity and Relation Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Heike</namePart>
<namePart type="family">Adel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce globally normalized convolutional neural networks for joint entity classification and relation extraction. In particular, we propose a way to utilize a linear-chain conditional random field output layer for predicting entity types and relations between entities at the same time. Our experiments show that global normalization outperforms a locally normalized softmax layer on a benchmark dataset.</abstract>
<identifier type="citekey">adel-schutze-2017-global</identifier>
<identifier type="doi">10.18653/v1/D17-1181</identifier>
<location>
<url>https://aclanthology.org/D17-1181/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1723</start>
<end>1729</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Global Normalization of Convolutional Neural Networks for Joint Entity and Relation Classification
%A Adel, Heike
%A Schütze, Hinrich
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F adel-schutze-2017-global
%X We introduce globally normalized convolutional neural networks for joint entity classification and relation extraction. In particular, we propose a way to utilize a linear-chain conditional random field output layer for predicting entity types and relations between entities at the same time. Our experiments show that global normalization outperforms a locally normalized softmax layer on a benchmark dataset.
%R 10.18653/v1/D17-1181
%U https://aclanthology.org/D17-1181/
%U https://doi.org/10.18653/v1/D17-1181
%P 1723-1729
Markdown (Informal)
[Global Normalization of Convolutional Neural Networks for Joint Entity and Relation Classification](https://aclanthology.org/D17-1181/) (Adel & Schütze, EMNLP 2017)
ACL