@inproceedings{zhang-wang-2017-noise,
    title = "Noise-Clustered Distant Supervision for Relation Extraction: A Nonparametric {B}ayesian Perspective",
    author = "Zhang, Qing  and
      Wang, Houfeng",
    editor = "Palmer, Martha  and
      Hwa, Rebecca  and
      Riedel, Sebastian",
    booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D17-1192/",
    doi = "10.18653/v1/D17-1192",
    pages = "1808--1813",
    abstract = "For the task of relation extraction, distant supervision is an efficient approach to generate labeled data by aligning knowledge base with free texts. The essence of it is a challenging incomplete multi-label classification problem with sparse and noisy features. To address the challenge, this work presents a novel nonparametric Bayesian formulation for the task. Experiment results show substantially higher top precision improvements over the traditional state-of-the-art approaches."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-wang-2017-noise">
    <titleInfo>
        <title>Noise-Clustered Distant Supervision for Relation Extraction: A Nonparametric Bayesian Perspective</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Qing</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Houfeng</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Martha</namePart>
            <namePart type="family">Palmer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rebecca</namePart>
            <namePart type="family">Hwa</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sebastian</namePart>
            <namePart type="family">Riedel</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>For the task of relation extraction, distant supervision is an efficient approach to generate labeled data by aligning knowledge base with free texts. The essence of it is a challenging incomplete multi-label classification problem with sparse and noisy features. To address the challenge, this work presents a novel nonparametric Bayesian formulation for the task. Experiment results show substantially higher top precision improvements over the traditional state-of-the-art approaches.</abstract>
    <identifier type="citekey">zhang-wang-2017-noise</identifier>
    <identifier type="doi">10.18653/v1/D17-1192</identifier>
    <location>
        <url>https://aclanthology.org/D17-1192/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>1808</start>
            <end>1813</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Noise-Clustered Distant Supervision for Relation Extraction: A Nonparametric Bayesian Perspective
%A Zhang, Qing
%A Wang, Houfeng
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F zhang-wang-2017-noise
%X For the task of relation extraction, distant supervision is an efficient approach to generate labeled data by aligning knowledge base with free texts. The essence of it is a challenging incomplete multi-label classification problem with sparse and noisy features. To address the challenge, this work presents a novel nonparametric Bayesian formulation for the task. Experiment results show substantially higher top precision improvements over the traditional state-of-the-art approaches.
%R 10.18653/v1/D17-1192
%U https://aclanthology.org/D17-1192/
%U https://doi.org/10.18653/v1/D17-1192
%P 1808-1813
Markdown (Informal)
[Noise-Clustered Distant Supervision for Relation Extraction: A Nonparametric Bayesian Perspective](https://aclanthology.org/D17-1192/) (Zhang & Wang, EMNLP 2017)
ACL