@inproceedings{yang-etal-2017-adapting,
title = "Adapting Topic Models using Lexical Associations with Tree Priors",
author = "Yang, Weiwei and
Boyd-Graber, Jordan and
Resnik, Philip",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1203",
doi = "10.18653/v1/D17-1203",
pages = "1901--1906",
abstract = "Models work best when they are optimized taking into account the evaluation criteria that people care about. For topic models, people often care about interpretability, which can be approximated using measures of lexical association. We integrate lexical association into topic optimization using tree priors, which provide a flexible framework that can take advantage of both first order word associations and the higher-order associations captured by word embeddings. Tree priors improve topic interpretability without hurting extrinsic performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2017-adapting">
<titleInfo>
<title>Adapting Topic Models using Lexical Associations with Tree Priors</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weiwei</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Models work best when they are optimized taking into account the evaluation criteria that people care about. For topic models, people often care about interpretability, which can be approximated using measures of lexical association. We integrate lexical association into topic optimization using tree priors, which provide a flexible framework that can take advantage of both first order word associations and the higher-order associations captured by word embeddings. Tree priors improve topic interpretability without hurting extrinsic performance.</abstract>
<identifier type="citekey">yang-etal-2017-adapting</identifier>
<identifier type="doi">10.18653/v1/D17-1203</identifier>
<location>
<url>https://aclanthology.org/D17-1203</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1901</start>
<end>1906</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adapting Topic Models using Lexical Associations with Tree Priors
%A Yang, Weiwei
%A Boyd-Graber, Jordan
%A Resnik, Philip
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F yang-etal-2017-adapting
%X Models work best when they are optimized taking into account the evaluation criteria that people care about. For topic models, people often care about interpretability, which can be approximated using measures of lexical association. We integrate lexical association into topic optimization using tree priors, which provide a flexible framework that can take advantage of both first order word associations and the higher-order associations captured by word embeddings. Tree priors improve topic interpretability without hurting extrinsic performance.
%R 10.18653/v1/D17-1203
%U https://aclanthology.org/D17-1203
%U https://doi.org/10.18653/v1/D17-1203
%P 1901-1906
Markdown (Informal)
[Adapting Topic Models using Lexical Associations with Tree Priors](https://aclanthology.org/D17-1203) (Yang et al., EMNLP 2017)
ACL