@inproceedings{wang-etal-2017-transition,
title = "Transition-Based Disfluency Detection using {LSTM}s",
author = "Wang, Shaolei and
Che, Wanxiang and
Zhang, Yue and
Zhang, Meishan and
Liu, Ting",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1296/",
doi = "10.18653/v1/D17-1296",
pages = "2785--2794",
abstract = "In this paper, we model the problem of disfluency detection using a transition-based framework, which incrementally constructs and labels the disfluency chunk of input sentences using a new transition system without syntax information. Compared with sequence labeling methods, it can capture non-local chunk-level features; compared with joint parsing and disfluency detection methods, it is free for noise in syntax. Experiments show that our model achieves state-of-the-art f-score of 87.5{\%} on the commonly used English Switchboard test set, and a set of in-house annotated Chinese data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2017-transition">
<titleInfo>
<title>Transition-Based Disfluency Detection using LSTMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shaolei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meishan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we model the problem of disfluency detection using a transition-based framework, which incrementally constructs and labels the disfluency chunk of input sentences using a new transition system without syntax information. Compared with sequence labeling methods, it can capture non-local chunk-level features; compared with joint parsing and disfluency detection methods, it is free for noise in syntax. Experiments show that our model achieves state-of-the-art f-score of 87.5% on the commonly used English Switchboard test set, and a set of in-house annotated Chinese data.</abstract>
<identifier type="citekey">wang-etal-2017-transition</identifier>
<identifier type="doi">10.18653/v1/D17-1296</identifier>
<location>
<url>https://aclanthology.org/D17-1296/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2785</start>
<end>2794</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transition-Based Disfluency Detection using LSTMs
%A Wang, Shaolei
%A Che, Wanxiang
%A Zhang, Yue
%A Zhang, Meishan
%A Liu, Ting
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F wang-etal-2017-transition
%X In this paper, we model the problem of disfluency detection using a transition-based framework, which incrementally constructs and labels the disfluency chunk of input sentences using a new transition system without syntax information. Compared with sequence labeling methods, it can capture non-local chunk-level features; compared with joint parsing and disfluency detection methods, it is free for noise in syntax. Experiments show that our model achieves state-of-the-art f-score of 87.5% on the commonly used English Switchboard test set, and a set of in-house annotated Chinese data.
%R 10.18653/v1/D17-1296
%U https://aclanthology.org/D17-1296/
%U https://doi.org/10.18653/v1/D17-1296
%P 2785-2794
Markdown (Informal)
[Transition-Based Disfluency Detection using LSTMs](https://aclanthology.org/D17-1296/) (Wang et al., EMNLP 2017)
ACL
- Shaolei Wang, Wanxiang Che, Yue Zhang, Meishan Zhang, and Ting Liu. 2017. Transition-Based Disfluency Detection using LSTMs. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2785–2794, Copenhagen, Denmark. Association for Computational Linguistics.