@inproceedings{yannakoudakis-etal-2017-neural,
    title = "Neural Sequence-Labelling Models for Grammatical Error Correction",
    author = "Yannakoudakis, Helen  and
      Rei, Marek  and
      Andersen, {\O}istein E.  and
      Yuan, Zheng",
    editor = "Palmer, Martha  and
      Hwa, Rebecca  and
      Riedel, Sebastian",
    booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D17-1297/",
    doi = "10.18653/v1/D17-1297",
    pages = "2795--2806",
    abstract = "We propose an approach to N-best list reranking using neural sequence-labelling models. We train a compositional model for error detection that calculates the probability of each token in a sentence being correct or incorrect, utilising the full sentence as context. Using the error detection model, we then re-rank the N best hypotheses generated by statistical machine translation systems. Our approach achieves state-of-the-art results on error correction for three different datasets, and it has the additional advantage of only using a small set of easily computed features that require no linguistic input."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yannakoudakis-etal-2017-neural">
    <titleInfo>
        <title>Neural Sequence-Labelling Models for Grammatical Error Correction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Helen</namePart>
        <namePart type="family">Yannakoudakis</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Marek</namePart>
        <namePart type="family">Rei</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Øistein</namePart>
        <namePart type="given">E</namePart>
        <namePart type="family">Andersen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zheng</namePart>
        <namePart type="family">Yuan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Martha</namePart>
            <namePart type="family">Palmer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rebecca</namePart>
            <namePart type="family">Hwa</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sebastian</namePart>
            <namePart type="family">Riedel</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose an approach to N-best list reranking using neural sequence-labelling models. We train a compositional model for error detection that calculates the probability of each token in a sentence being correct or incorrect, utilising the full sentence as context. Using the error detection model, we then re-rank the N best hypotheses generated by statistical machine translation systems. Our approach achieves state-of-the-art results on error correction for three different datasets, and it has the additional advantage of only using a small set of easily computed features that require no linguistic input.</abstract>
    <identifier type="citekey">yannakoudakis-etal-2017-neural</identifier>
    <identifier type="doi">10.18653/v1/D17-1297</identifier>
    <location>
        <url>https://aclanthology.org/D17-1297/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>2795</start>
            <end>2806</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Sequence-Labelling Models for Grammatical Error Correction
%A Yannakoudakis, Helen
%A Rei, Marek
%A Andersen, Øistein E.
%A Yuan, Zheng
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F yannakoudakis-etal-2017-neural
%X We propose an approach to N-best list reranking using neural sequence-labelling models. We train a compositional model for error detection that calculates the probability of each token in a sentence being correct or incorrect, utilising the full sentence as context. Using the error detection model, we then re-rank the N best hypotheses generated by statistical machine translation systems. Our approach achieves state-of-the-art results on error correction for three different datasets, and it has the additional advantage of only using a small set of easily computed features that require no linguistic input.
%R 10.18653/v1/D17-1297
%U https://aclanthology.org/D17-1297/
%U https://doi.org/10.18653/v1/D17-1297
%P 2795-2806
Markdown (Informal)
[Neural Sequence-Labelling Models for Grammatical Error Correction](https://aclanthology.org/D17-1297/) (Yannakoudakis et al., EMNLP 2017)
ACL