@inproceedings{yannakoudakis-etal-2017-neural,
title = "Neural Sequence-Labelling Models for Grammatical Error Correction",
author = "Yannakoudakis, Helen and
Rei, Marek and
Andersen, {\O}istein E. and
Yuan, Zheng",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1297",
doi = "10.18653/v1/D17-1297",
pages = "2795--2806",
abstract = "We propose an approach to N-best list reranking using neural sequence-labelling models. We train a compositional model for error detection that calculates the probability of each token in a sentence being correct or incorrect, utilising the full sentence as context. Using the error detection model, we then re-rank the N best hypotheses generated by statistical machine translation systems. Our approach achieves state-of-the-art results on error correction for three different datasets, and it has the additional advantage of only using a small set of easily computed features that require no linguistic input.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yannakoudakis-etal-2017-neural">
<titleInfo>
<title>Neural Sequence-Labelling Models for Grammatical Error Correction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Rei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Øistein</namePart>
<namePart type="given">E</namePart>
<namePart type="family">Andersen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an approach to N-best list reranking using neural sequence-labelling models. We train a compositional model for error detection that calculates the probability of each token in a sentence being correct or incorrect, utilising the full sentence as context. Using the error detection model, we then re-rank the N best hypotheses generated by statistical machine translation systems. Our approach achieves state-of-the-art results on error correction for three different datasets, and it has the additional advantage of only using a small set of easily computed features that require no linguistic input.</abstract>
<identifier type="citekey">yannakoudakis-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/D17-1297</identifier>
<location>
<url>https://aclanthology.org/D17-1297</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2795</start>
<end>2806</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Sequence-Labelling Models for Grammatical Error Correction
%A Yannakoudakis, Helen
%A Rei, Marek
%A Andersen, Øistein E.
%A Yuan, Zheng
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F yannakoudakis-etal-2017-neural
%X We propose an approach to N-best list reranking using neural sequence-labelling models. We train a compositional model for error detection that calculates the probability of each token in a sentence being correct or incorrect, utilising the full sentence as context. Using the error detection model, we then re-rank the N best hypotheses generated by statistical machine translation systems. Our approach achieves state-of-the-art results on error correction for three different datasets, and it has the additional advantage of only using a small set of easily computed features that require no linguistic input.
%R 10.18653/v1/D17-1297
%U https://aclanthology.org/D17-1297
%U https://doi.org/10.18653/v1/D17-1297
%P 2795-2806
Markdown (Informal)
[Neural Sequence-Labelling Models for Grammatical Error Correction](https://aclanthology.org/D17-1297) (Yannakoudakis et al., EMNLP 2017)
ACL