@inproceedings{li-lam-2017-deep,
title = "Deep Multi-Task Learning for Aspect Term Extraction with Memory Interaction",
author = "Li, Xin and
Lam, Wai",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1310",
doi = "10.18653/v1/D17-1310",
pages = "2886--2892",
abstract = "We propose a novel LSTM-based deep multi-task learning framework for aspect term extraction from user review sentences. Two LSTMs equipped with extended memories and neural memory operations are designed for jointly handling the extraction tasks of aspects and opinions via memory interactions. Sentimental sentence constraint is also added for more accurate prediction via another LSTM. Experiment results over two benchmark datasets demonstrate the effectiveness of our framework.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-lam-2017-deep">
<titleInfo>
<title>Deep Multi-Task Learning for Aspect Term Extraction with Memory Interaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wai</namePart>
<namePart type="family">Lam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel LSTM-based deep multi-task learning framework for aspect term extraction from user review sentences. Two LSTMs equipped with extended memories and neural memory operations are designed for jointly handling the extraction tasks of aspects and opinions via memory interactions. Sentimental sentence constraint is also added for more accurate prediction via another LSTM. Experiment results over two benchmark datasets demonstrate the effectiveness of our framework.</abstract>
<identifier type="citekey">li-lam-2017-deep</identifier>
<identifier type="doi">10.18653/v1/D17-1310</identifier>
<location>
<url>https://aclanthology.org/D17-1310</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2886</start>
<end>2892</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Multi-Task Learning for Aspect Term Extraction with Memory Interaction
%A Li, Xin
%A Lam, Wai
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F li-lam-2017-deep
%X We propose a novel LSTM-based deep multi-task learning framework for aspect term extraction from user review sentences. Two LSTMs equipped with extended memories and neural memory operations are designed for jointly handling the extraction tasks of aspects and opinions via memory interactions. Sentimental sentence constraint is also added for more accurate prediction via another LSTM. Experiment results over two benchmark datasets demonstrate the effectiveness of our framework.
%R 10.18653/v1/D17-1310
%U https://aclanthology.org/D17-1310
%U https://doi.org/10.18653/v1/D17-1310
%P 2886-2892
Markdown (Informal)
[Deep Multi-Task Learning for Aspect Term Extraction with Memory Interaction](https://aclanthology.org/D17-1310) (Li & Lam, EMNLP 2017)
ACL