@inproceedings{xu-koehn-2017-zipporah,
title = "{Z}ipporah: a Fast and Scalable Data Cleaning System for Noisy Web-Crawled Parallel Corpora",
author = "Xu, Hainan and
Koehn, Philipp",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1319/",
doi = "10.18653/v1/D17-1319",
pages = "2945--2950",
abstract = "We introduce Zipporah, a fast and scalable data cleaning system. We propose a novel type of bag-of-words translation feature, and train logistic regression models to classify good data and synthetic noisy data in the proposed feature space. The trained model is used to score parallel sentences in the data pool for selection. As shown in experiments, Zipporah selects a high-quality parallel corpus from a large, mixed quality data pool. In particular, for one noisy dataset, Zipporah achieves a 2.1 BLEU score improvement with using 1/5 of the data over using the entire corpus."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-koehn-2017-zipporah">
<titleInfo>
<title>Zipporah: a Fast and Scalable Data Cleaning System for Noisy Web-Crawled Parallel Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hainan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce Zipporah, a fast and scalable data cleaning system. We propose a novel type of bag-of-words translation feature, and train logistic regression models to classify good data and synthetic noisy data in the proposed feature space. The trained model is used to score parallel sentences in the data pool for selection. As shown in experiments, Zipporah selects a high-quality parallel corpus from a large, mixed quality data pool. In particular, for one noisy dataset, Zipporah achieves a 2.1 BLEU score improvement with using 1/5 of the data over using the entire corpus.</abstract>
<identifier type="citekey">xu-koehn-2017-zipporah</identifier>
<identifier type="doi">10.18653/v1/D17-1319</identifier>
<location>
<url>https://aclanthology.org/D17-1319/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2945</start>
<end>2950</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zipporah: a Fast and Scalable Data Cleaning System for Noisy Web-Crawled Parallel Corpora
%A Xu, Hainan
%A Koehn, Philipp
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F xu-koehn-2017-zipporah
%X We introduce Zipporah, a fast and scalable data cleaning system. We propose a novel type of bag-of-words translation feature, and train logistic regression models to classify good data and synthetic noisy data in the proposed feature space. The trained model is used to score parallel sentences in the data pool for selection. As shown in experiments, Zipporah selects a high-quality parallel corpus from a large, mixed quality data pool. In particular, for one noisy dataset, Zipporah achieves a 2.1 BLEU score improvement with using 1/5 of the data over using the entire corpus.
%R 10.18653/v1/D17-1319
%U https://aclanthology.org/D17-1319/
%U https://doi.org/10.18653/v1/D17-1319
%P 2945-2950
Markdown (Informal)
[Zipporah: a Fast and Scalable Data Cleaning System for Noisy Web-Crawled Parallel Corpora](https://aclanthology.org/D17-1319/) (Xu & Koehn, EMNLP 2017)
ACL