@inproceedings{ni-etal-2019-justifying,
title = "Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects",
author = "Ni, Jianmo and
Li, Jiacheng and
McAuley, Julian",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1018",
doi = "10.18653/v1/D19-1018",
pages = "188--197",
abstract = "Several recent works have considered the problem of generating reviews (or {`}tips{'}) as a form of explanation as to why a recommendation might match a customer{'}s interests. While promising, we demonstrate that existing approaches struggle (in terms of both quality and content) to generate justifications that are relevant to users{'} decision-making process. We seek to introduce new datasets and methods to address the recommendation justification task. In terms of data, we first propose an {`}extractive{'} approach to identify review segments which justify users{'} intentions; this approach is then used to distantly label massive review corpora and construct large-scale personalized recommendation justification datasets. In terms of generation, we are able to design two personalized generation models with this data: (1) a reference-based Seq2Seq model with aspect-planning which can generate justifications covering different aspects, and (2) an aspect-conditional masked language model which can generate diverse justifications based on templates extracted from justification histories. We conduct experiments on two real-world datasets which show that our model is capable of generating convincing and diverse justifications.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ni-etal-2019-justifying">
<titleInfo>
<title>Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianmo</namePart>
<namePart type="family">Ni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiacheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">McAuley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Several recent works have considered the problem of generating reviews (or ‘tips’) as a form of explanation as to why a recommendation might match a customer’s interests. While promising, we demonstrate that existing approaches struggle (in terms of both quality and content) to generate justifications that are relevant to users’ decision-making process. We seek to introduce new datasets and methods to address the recommendation justification task. In terms of data, we first propose an ‘extractive’ approach to identify review segments which justify users’ intentions; this approach is then used to distantly label massive review corpora and construct large-scale personalized recommendation justification datasets. In terms of generation, we are able to design two personalized generation models with this data: (1) a reference-based Seq2Seq model with aspect-planning which can generate justifications covering different aspects, and (2) an aspect-conditional masked language model which can generate diverse justifications based on templates extracted from justification histories. We conduct experiments on two real-world datasets which show that our model is capable of generating convincing and diverse justifications.</abstract>
<identifier type="citekey">ni-etal-2019-justifying</identifier>
<identifier type="doi">10.18653/v1/D19-1018</identifier>
<location>
<url>https://aclanthology.org/D19-1018</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>188</start>
<end>197</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects
%A Ni, Jianmo
%A Li, Jiacheng
%A McAuley, Julian
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F ni-etal-2019-justifying
%X Several recent works have considered the problem of generating reviews (or ‘tips’) as a form of explanation as to why a recommendation might match a customer’s interests. While promising, we demonstrate that existing approaches struggle (in terms of both quality and content) to generate justifications that are relevant to users’ decision-making process. We seek to introduce new datasets and methods to address the recommendation justification task. In terms of data, we first propose an ‘extractive’ approach to identify review segments which justify users’ intentions; this approach is then used to distantly label massive review corpora and construct large-scale personalized recommendation justification datasets. In terms of generation, we are able to design two personalized generation models with this data: (1) a reference-based Seq2Seq model with aspect-planning which can generate justifications covering different aspects, and (2) an aspect-conditional masked language model which can generate diverse justifications based on templates extracted from justification histories. We conduct experiments on two real-world datasets which show that our model is capable of generating convincing and diverse justifications.
%R 10.18653/v1/D19-1018
%U https://aclanthology.org/D19-1018
%U https://doi.org/10.18653/v1/D19-1018
%P 188-197
Markdown (Informal)
[Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects](https://aclanthology.org/D19-1018) (Ni et al., EMNLP-IJCNLP 2019)
ACL