Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects

Jianmo Ni, Jiacheng Li, Julian McAuley


Abstract
Several recent works have considered the problem of generating reviews (or ‘tips’) as a form of explanation as to why a recommendation might match a customer’s interests. While promising, we demonstrate that existing approaches struggle (in terms of both quality and content) to generate justifications that are relevant to users’ decision-making process. We seek to introduce new datasets and methods to address the recommendation justification task. In terms of data, we first propose an ‘extractive’ approach to identify review segments which justify users’ intentions; this approach is then used to distantly label massive review corpora and construct large-scale personalized recommendation justification datasets. In terms of generation, we are able to design two personalized generation models with this data: (1) a reference-based Seq2Seq model with aspect-planning which can generate justifications covering different aspects, and (2) an aspect-conditional masked language model which can generate diverse justifications based on templates extracted from justification histories. We conduct experiments on two real-world datasets which show that our model is capable of generating convincing and diverse justifications.
Anthology ID:
D19-1018
Volume:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
Venues:
EMNLP | IJCNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
188–197
Language:
URL:
https://aclanthology.org/D19-1018/
DOI:
10.18653/v1/D19-1018
Bibkey:
Cite (ACL):
Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 188–197, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects (Ni et al., EMNLP-IJCNLP 2019)
Copy Citation:
PDF:
https://aclanthology.org/D19-1018.pdf