Doc2EDAG: An End-to-End Document-level Framework for Chinese Financial Event Extraction

Shun Zheng, Wei Cao, Wei Xu, Jiang Bian


Abstract
Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at https://github.com/dolphin-zs/Doc2EDAG.
Anthology ID:
D19-1032
Volume:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
Venues:
EMNLP | IJCNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
337–346
Language:
URL:
https://aclanthology.org/D19-1032/
DOI:
10.18653/v1/D19-1032
Bibkey:
Cite (ACL):
Shun Zheng, Wei Cao, Wei Xu, and Jiang Bian. 2019. Doc2EDAG: An End-to-End Document-level Framework for Chinese Financial Event Extraction. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 337–346, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
Doc2EDAG: An End-to-End Document-level Framework for Chinese Financial Event Extraction (Zheng et al., EMNLP-IJCNLP 2019)
Copy Citation:
PDF:
https://aclanthology.org/D19-1032.pdf
Attachment:
 D19-1032.Attachment.zip
Code
 dolphin-zs/Doc2EDAG +  additional community code
Data
ChFinAnn