CaRe: Open Knowledge Graph Embeddings

Swapnil Gupta, Sreyash Kenkre, Partha Talukdar


Abstract
Open Information Extraction (OpenIE) methods are effective at extracting (noun phrase, relation phrase, noun phrase) triples from text, e.g., (Barack Obama, took birth in, Honolulu). Organization of such triples in the form of a graph with noun phrases (NPs) as nodes and relation phrases (RPs) as edges results in the construction of Open Knowledge Graphs (OpenKGs). In order to use such OpenKGs in downstream tasks, it is often desirable to learn embeddings of the NPs and RPs present in the graph. Even though several Knowledge Graph (KG) embedding methods have been recently proposed, all of those methods have targeted Ontological KGs, as opposed to OpenKGs. Straightforward application of existing Ontological KG embedding methods to OpenKGs is challenging, as unlike Ontological KGs, OpenKGs are not canonicalized, i.e., a real-world entity may be represented using multiple nodes in the OpenKG, with each node corresponding to a different NP referring to the entity. For example, nodes with labels Barack Obama, Obama, and President Obama may refer to the same real-world entity Barack Obama. Even though canonicalization of OpenKGs has received some attention lately, output of such methods has not been used to improve OpenKG embed- dings. We fill this gap in the paper and propose Canonicalization-infused Representations (CaRe) for OpenKGs. Through extensive experiments, we observe that CaRe enables existing models to adapt to the challenges in OpenKGs and achieve substantial improvements for the link prediction task.
Anthology ID:
D19-1036
Volume:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
Venues:
EMNLP | IJCNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
378–388
Language:
URL:
https://aclanthology.org/D19-1036/
DOI:
10.18653/v1/D19-1036
Bibkey:
Cite (ACL):
Swapnil Gupta, Sreyash Kenkre, and Partha Talukdar. 2019. CaRe: Open Knowledge Graph Embeddings. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 378–388, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
CaRe: Open Knowledge Graph Embeddings (Gupta et al., EMNLP-IJCNLP 2019)
Copy Citation:
PDF:
https://aclanthology.org/D19-1036.pdf