@inproceedings{gauthier-levy-2019-linking,
title = "Linking artificial and human neural representations of language",
author = "Gauthier, Jon and
Levy, Roger",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1050/",
doi = "10.18653/v1/D19-1050",
pages = "529--539",
abstract = "What information from an act of sentence understanding is robustly represented in the human brain? We investigate this question by comparing sentence encoding models on a brain decoding task, where the sentence that an experimental participant has seen must be predicted from the fMRI signal evoked by the sentence. We take a pre-trained BERT architecture as a baseline sentence encoding model and fine-tune it on a variety of natural language understanding (NLU) tasks, asking which lead to improvements in brain-decoding performance. We find that none of the sentence encoding tasks tested yield significant increases in brain decoding performance. Through further task ablations and representational analyses, we find that tasks which produce syntax-light representations yield significant improvements in brain decoding performance. Our results constrain the space of NLU models that could best account for human neural representations of language, but also suggest limits on the possibility of decoding fine-grained syntactic information from fMRI human neuroimaging."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gauthier-levy-2019-linking">
<titleInfo>
<title>Linking artificial and human neural representations of language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jon</namePart>
<namePart type="family">Gauthier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>What information from an act of sentence understanding is robustly represented in the human brain? We investigate this question by comparing sentence encoding models on a brain decoding task, where the sentence that an experimental participant has seen must be predicted from the fMRI signal evoked by the sentence. We take a pre-trained BERT architecture as a baseline sentence encoding model and fine-tune it on a variety of natural language understanding (NLU) tasks, asking which lead to improvements in brain-decoding performance. We find that none of the sentence encoding tasks tested yield significant increases in brain decoding performance. Through further task ablations and representational analyses, we find that tasks which produce syntax-light representations yield significant improvements in brain decoding performance. Our results constrain the space of NLU models that could best account for human neural representations of language, but also suggest limits on the possibility of decoding fine-grained syntactic information from fMRI human neuroimaging.</abstract>
<identifier type="citekey">gauthier-levy-2019-linking</identifier>
<identifier type="doi">10.18653/v1/D19-1050</identifier>
<location>
<url>https://aclanthology.org/D19-1050/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>529</start>
<end>539</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Linking artificial and human neural representations of language
%A Gauthier, Jon
%A Levy, Roger
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F gauthier-levy-2019-linking
%X What information from an act of sentence understanding is robustly represented in the human brain? We investigate this question by comparing sentence encoding models on a brain decoding task, where the sentence that an experimental participant has seen must be predicted from the fMRI signal evoked by the sentence. We take a pre-trained BERT architecture as a baseline sentence encoding model and fine-tune it on a variety of natural language understanding (NLU) tasks, asking which lead to improvements in brain-decoding performance. We find that none of the sentence encoding tasks tested yield significant increases in brain decoding performance. Through further task ablations and representational analyses, we find that tasks which produce syntax-light representations yield significant improvements in brain decoding performance. Our results constrain the space of NLU models that could best account for human neural representations of language, but also suggest limits on the possibility of decoding fine-grained syntactic information from fMRI human neuroimaging.
%R 10.18653/v1/D19-1050
%U https://aclanthology.org/D19-1050/
%U https://doi.org/10.18653/v1/D19-1050
%P 529-539
Markdown (Informal)
[Linking artificial and human neural representations of language](https://aclanthology.org/D19-1050/) (Gauthier & Levy, EMNLP-IJCNLP 2019)
ACL
- Jon Gauthier and Roger Levy. 2019. Linking artificial and human neural representations of language. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 529–539, Hong Kong, China. Association for Computational Linguistics.