@inproceedings{crabbe-etal-2019-variable,
title = "Variable beam search for generative neural parsing and its relevance for the analysis of neuro-imaging signal",
author = "Crabb{\'e}, Benoit and
Fabre, Murielle and
Pallier, Christophe",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1106",
doi = "10.18653/v1/D19-1106",
pages = "1150--1160",
abstract = "This paper describes a method of variable beam size inference for Recurrent Neural Network Grammar (rnng) by drawing inspiration from sequential Monte-Carlo methods such as particle filtering. The paper studies the relevance of such methods for speeding up the computations of direct generative parsing for rnng. But it also studies the potential cognitive interpretation of the underlying representations built by the search method (beam activity) through analysis of neuro-imaging signal.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="crabbe-etal-2019-variable">
<titleInfo>
<title>Variable beam search for generative neural parsing and its relevance for the analysis of neuro-imaging signal</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benoit</namePart>
<namePart type="family">Crabbé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Murielle</namePart>
<namePart type="family">Fabre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Pallier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a method of variable beam size inference for Recurrent Neural Network Grammar (rnng) by drawing inspiration from sequential Monte-Carlo methods such as particle filtering. The paper studies the relevance of such methods for speeding up the computations of direct generative parsing for rnng. But it also studies the potential cognitive interpretation of the underlying representations built by the search method (beam activity) through analysis of neuro-imaging signal.</abstract>
<identifier type="citekey">crabbe-etal-2019-variable</identifier>
<identifier type="doi">10.18653/v1/D19-1106</identifier>
<location>
<url>https://aclanthology.org/D19-1106</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>1150</start>
<end>1160</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Variable beam search for generative neural parsing and its relevance for the analysis of neuro-imaging signal
%A Crabbé, Benoit
%A Fabre, Murielle
%A Pallier, Christophe
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F crabbe-etal-2019-variable
%X This paper describes a method of variable beam size inference for Recurrent Neural Network Grammar (rnng) by drawing inspiration from sequential Monte-Carlo methods such as particle filtering. The paper studies the relevance of such methods for speeding up the computations of direct generative parsing for rnng. But it also studies the potential cognitive interpretation of the underlying representations built by the search method (beam activity) through analysis of neuro-imaging signal.
%R 10.18653/v1/D19-1106
%U https://aclanthology.org/D19-1106
%U https://doi.org/10.18653/v1/D19-1106
%P 1150-1160
Markdown (Informal)
[Variable beam search for generative neural parsing and its relevance for the analysis of neuro-imaging signal](https://aclanthology.org/D19-1106) (Crabbé et al., EMNLP-IJCNLP 2019)
ACL