@inproceedings{dufter-schutze-2019-analytical,
title = "Analytical Methods for Interpretable Ultradense Word Embeddings",
author = {Dufter, Philipp and
Sch{\"u}tze, Hinrich},
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1111/",
doi = "10.18653/v1/D19-1111",
pages = "1185--1191",
abstract = "Word embeddings are useful for a wide variety of tasks, but they lack interpretability. By rotating word spaces, interpretable dimensions can be identified while preserving the information contained in the embeddings without any loss. In this work, we investigate three methods for making word spaces interpretable by rotation: Densifier (Rothe et al., 2016), linear SVMs and DensRay, a new method we propose. In contrast to Densifier, DensRay can be computed in closed form, is hyperparameter-free and thus more robust than Densifier. We evaluate the three methods on lexicon induction and set-based word analogy. In addition we provide qualitative insights as to how interpretable word spaces can be used for removing gender bias from embeddings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dufter-schutze-2019-analytical">
<titleInfo>
<title>Analytical Methods for Interpretable Ultradense Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Dufter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embeddings are useful for a wide variety of tasks, but they lack interpretability. By rotating word spaces, interpretable dimensions can be identified while preserving the information contained in the embeddings without any loss. In this work, we investigate three methods for making word spaces interpretable by rotation: Densifier (Rothe et al., 2016), linear SVMs and DensRay, a new method we propose. In contrast to Densifier, DensRay can be computed in closed form, is hyperparameter-free and thus more robust than Densifier. We evaluate the three methods on lexicon induction and set-based word analogy. In addition we provide qualitative insights as to how interpretable word spaces can be used for removing gender bias from embeddings.</abstract>
<identifier type="citekey">dufter-schutze-2019-analytical</identifier>
<identifier type="doi">10.18653/v1/D19-1111</identifier>
<location>
<url>https://aclanthology.org/D19-1111/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>1185</start>
<end>1191</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analytical Methods for Interpretable Ultradense Word Embeddings
%A Dufter, Philipp
%A Schütze, Hinrich
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F dufter-schutze-2019-analytical
%X Word embeddings are useful for a wide variety of tasks, but they lack interpretability. By rotating word spaces, interpretable dimensions can be identified while preserving the information contained in the embeddings without any loss. In this work, we investigate three methods for making word spaces interpretable by rotation: Densifier (Rothe et al., 2016), linear SVMs and DensRay, a new method we propose. In contrast to Densifier, DensRay can be computed in closed form, is hyperparameter-free and thus more robust than Densifier. We evaluate the three methods on lexicon induction and set-based word analogy. In addition we provide qualitative insights as to how interpretable word spaces can be used for removing gender bias from embeddings.
%R 10.18653/v1/D19-1111
%U https://aclanthology.org/D19-1111/
%U https://doi.org/10.18653/v1/D19-1111
%P 1185-1191
Markdown (Informal)
[Analytical Methods for Interpretable Ultradense Word Embeddings](https://aclanthology.org/D19-1111/) (Dufter & Schütze, EMNLP-IJCNLP 2019)
ACL
- Philipp Dufter and Hinrich Schütze. 2019. Analytical Methods for Interpretable Ultradense Word Embeddings. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1185–1191, Hong Kong, China. Association for Computational Linguistics.