Data-Efficient Goal-Oriented Conversation with Dialogue Knowledge Transfer Networks

Igor Shalyminov, Sungjin Lee, Arash Eshghi, Oliver Lemon


Abstract
Goal-oriented dialogue systems are now being widely adopted in industry where it is of key importance to maintain a rapid prototyping cycle for new products and domains. Data-driven dialogue system development has to be adapted to meet this requirement — therefore, reducing the amount of data and annotations necessary for training such systems is a central research problem. In this paper, we present the Dialogue Knowledge Transfer Network (DiKTNet), a state-of-the-art approach to goal-oriented dialogue generation which only uses a few example dialogues (i.e. few-shot learning), none of which has to be annotated. We achieve this by performing a 2-stage training. Firstly, we perform unsupervised dialogue representation pre-training on a large source of goal-oriented dialogues in multiple domains, the MetaLWOz corpus. Secondly, at the transfer stage, we train DiKTNet using this representation together with 2 other textual knowledge sources with different levels of generality: ELMo encoder and the main dataset’s source domains. Our main dataset is the Stanford Multi-Domain dialogue corpus. We evaluate our model on it in terms of BLEU and Entity F1 scores, and show that our approach significantly and consistently improves upon a series of baseline models as well as over the previous state-of-the-art dialogue generation model, ZSDG. The improvement upon the latter — up to 10% in Entity F1 and the average of 3% in BLEU score — is achieved using only 10% equivalent of ZSDG’s in-domain training data.
Anthology ID:
D19-1183
Volume:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
Venues:
EMNLP | IJCNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
1741–1751
Language:
URL:
https://aclanthology.org/D19-1183/
DOI:
10.18653/v1/D19-1183
Bibkey:
Cite (ACL):
Igor Shalyminov, Sungjin Lee, Arash Eshghi, and Oliver Lemon. 2019. Data-Efficient Goal-Oriented Conversation with Dialogue Knowledge Transfer Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1741–1751, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
Data-Efficient Goal-Oriented Conversation with Dialogue Knowledge Transfer Networks (Shalyminov et al., EMNLP-IJCNLP 2019)
Copy Citation:
PDF:
https://aclanthology.org/D19-1183.pdf
Attachment:
 D19-1183.Attachment.pdf