@inproceedings{alberti-etal-2019-fusion,
title = "Fusion of Detected Objects in Text for Visual Question Answering",
author = "Alberti, Chris and
Ling, Jeffrey and
Collins, Michael and
Reitter, David",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1219/",
doi = "10.18653/v1/D19-1219",
pages = "2131--2140",
abstract = "To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The {\textquotedblleft}Bounding Boxes in Text Transformer{\textquotedblright} (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark, achieving a new state-of-the-art with a 25{\%} relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019). A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alberti-etal-2019-fusion">
<titleInfo>
<title>Fusion of Detected Objects in Text for Visual Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Alberti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeffrey</namePart>
<namePart type="family">Ling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Collins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Reitter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The “Bounding Boxes in Text Transformer” (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark, achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019). A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided.</abstract>
<identifier type="citekey">alberti-etal-2019-fusion</identifier>
<identifier type="doi">10.18653/v1/D19-1219</identifier>
<location>
<url>https://aclanthology.org/D19-1219/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2131</start>
<end>2140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fusion of Detected Objects in Text for Visual Question Answering
%A Alberti, Chris
%A Ling, Jeffrey
%A Collins, Michael
%A Reitter, David
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F alberti-etal-2019-fusion
%X To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The “Bounding Boxes in Text Transformer” (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark, achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019). A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided.
%R 10.18653/v1/D19-1219
%U https://aclanthology.org/D19-1219/
%U https://doi.org/10.18653/v1/D19-1219
%P 2131-2140
Markdown (Informal)
[Fusion of Detected Objects in Text for Visual Question Answering](https://aclanthology.org/D19-1219/) (Alberti et al., EMNLP-IJCNLP 2019)
ACL
- Chris Alberti, Jeffrey Ling, Michael Collins, and David Reitter. 2019. Fusion of Detected Objects in Text for Visual Question Answering. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2131–2140, Hong Kong, China. Association for Computational Linguistics.