@inproceedings{wallace-etal-2019-universal,
title = "Universal Adversarial Triggers for Attacking and Analyzing {NLP}",
author = "Wallace, Eric and
Feng, Shi and
Kandpal, Nikhil and
Gardner, Matt and
Singh, Sameer",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1221/",
doi = "10.18653/v1/D19-1221",
pages = "2153--2162",
abstract = "Adversarial examples highlight model vulnerabilities and are useful for evaluation and interpretation. We define universal adversarial triggers: input-agnostic sequences of tokens that trigger a model to produce a specific prediction when concatenated to any input from a dataset. We propose a gradient-guided search over tokens which finds short trigger sequences (e.g., one word for classification and four words for language modeling) that successfully trigger the target prediction. For example, triggers cause SNLI entailment accuracy to drop from 89.94{\%} to 0.55{\%}, 72{\%} of {\textquotedblleft}why{\textquotedblright} questions in SQuAD to be answered {\textquotedblleft}to kill american people{\textquotedblright}, and the GPT-2 language model to spew racist output even when conditioned on non-racial contexts. Furthermore, although the triggers are optimized using white-box access to a specific model, they transfer to other models for all tasks we consider. Finally, since triggers are input-agnostic, they provide an analysis of global model behavior. For instance, they confirm that SNLI models exploit dataset biases and help to diagnose heuristics learned by reading comprehension models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wallace-etal-2019-universal">
<titleInfo>
<title>Universal Adversarial Triggers for Attacking and Analyzing NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shi</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikhil</namePart>
<namePart type="family">Kandpal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Gardner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sameer</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Adversarial examples highlight model vulnerabilities and are useful for evaluation and interpretation. We define universal adversarial triggers: input-agnostic sequences of tokens that trigger a model to produce a specific prediction when concatenated to any input from a dataset. We propose a gradient-guided search over tokens which finds short trigger sequences (e.g., one word for classification and four words for language modeling) that successfully trigger the target prediction. For example, triggers cause SNLI entailment accuracy to drop from 89.94% to 0.55%, 72% of “why” questions in SQuAD to be answered “to kill american people”, and the GPT-2 language model to spew racist output even when conditioned on non-racial contexts. Furthermore, although the triggers are optimized using white-box access to a specific model, they transfer to other models for all tasks we consider. Finally, since triggers are input-agnostic, they provide an analysis of global model behavior. For instance, they confirm that SNLI models exploit dataset biases and help to diagnose heuristics learned by reading comprehension models.</abstract>
<identifier type="citekey">wallace-etal-2019-universal</identifier>
<identifier type="doi">10.18653/v1/D19-1221</identifier>
<location>
<url>https://aclanthology.org/D19-1221/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2153</start>
<end>2162</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Universal Adversarial Triggers for Attacking and Analyzing NLP
%A Wallace, Eric
%A Feng, Shi
%A Kandpal, Nikhil
%A Gardner, Matt
%A Singh, Sameer
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F wallace-etal-2019-universal
%X Adversarial examples highlight model vulnerabilities and are useful for evaluation and interpretation. We define universal adversarial triggers: input-agnostic sequences of tokens that trigger a model to produce a specific prediction when concatenated to any input from a dataset. We propose a gradient-guided search over tokens which finds short trigger sequences (e.g., one word for classification and four words for language modeling) that successfully trigger the target prediction. For example, triggers cause SNLI entailment accuracy to drop from 89.94% to 0.55%, 72% of “why” questions in SQuAD to be answered “to kill american people”, and the GPT-2 language model to spew racist output even when conditioned on non-racial contexts. Furthermore, although the triggers are optimized using white-box access to a specific model, they transfer to other models for all tasks we consider. Finally, since triggers are input-agnostic, they provide an analysis of global model behavior. For instance, they confirm that SNLI models exploit dataset biases and help to diagnose heuristics learned by reading comprehension models.
%R 10.18653/v1/D19-1221
%U https://aclanthology.org/D19-1221/
%U https://doi.org/10.18653/v1/D19-1221
%P 2153-2162
Markdown (Informal)
[Universal Adversarial Triggers for Attacking and Analyzing NLP](https://aclanthology.org/D19-1221/) (Wallace et al., EMNLP-IJCNLP 2019)
ACL
- Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019. Universal Adversarial Triggers for Attacking and Analyzing NLP. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2153–2162, Hong Kong, China. Association for Computational Linguistics.