@inproceedings{mabona-etal-2019-neural,
title = "Neural Generative Rhetorical Structure Parsing",
author = "Mabona, Amandla and
Rimell, Laura and
Clark, Stephen and
Vlachos, Andreas",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1233/",
doi = "10.18653/v1/D19-1233",
pages = "2284--2295",
abstract = "Rhetorical structure trees have been shown to be useful for several document-level tasks including summarization and document classification. Previous approaches to RST parsing have used discriminative models; however, these are less sample efficient than generative models, and RST parsing datasets are typically small. In this paper, we present the first generative model for RST parsing. Our model is a document-level RNN grammar (RNNG) with a bottom-up traversal order. We show that, for our parser`s traversal order, previous beam search algorithms for RNNGs have a left-branching bias which is ill-suited for RST parsing. We develop a novel beam search algorithm that keeps track of both structure-and word-generating actions without exhibit-ing this branching bias and results in absolute improvements of 6.8 and 2.9 on unlabelled and labelled F1 over previous algorithms. Overall, our generative model outperforms a discriminative model with the same features by 2.6 F1points and achieves performance comparable to the state-of-the-art, outperforming all published parsers from a recent replication study that do not use additional training data"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mabona-etal-2019-neural">
<titleInfo>
<title>Neural Generative Rhetorical Structure Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amandla</namePart>
<namePart type="family">Mabona</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Rimell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Rhetorical structure trees have been shown to be useful for several document-level tasks including summarization and document classification. Previous approaches to RST parsing have used discriminative models; however, these are less sample efficient than generative models, and RST parsing datasets are typically small. In this paper, we present the first generative model for RST parsing. Our model is a document-level RNN grammar (RNNG) with a bottom-up traversal order. We show that, for our parser‘s traversal order, previous beam search algorithms for RNNGs have a left-branching bias which is ill-suited for RST parsing. We develop a novel beam search algorithm that keeps track of both structure-and word-generating actions without exhibit-ing this branching bias and results in absolute improvements of 6.8 and 2.9 on unlabelled and labelled F1 over previous algorithms. Overall, our generative model outperforms a discriminative model with the same features by 2.6 F1points and achieves performance comparable to the state-of-the-art, outperforming all published parsers from a recent replication study that do not use additional training data</abstract>
<identifier type="citekey">mabona-etal-2019-neural</identifier>
<identifier type="doi">10.18653/v1/D19-1233</identifier>
<location>
<url>https://aclanthology.org/D19-1233/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2284</start>
<end>2295</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Generative Rhetorical Structure Parsing
%A Mabona, Amandla
%A Rimell, Laura
%A Clark, Stephen
%A Vlachos, Andreas
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F mabona-etal-2019-neural
%X Rhetorical structure trees have been shown to be useful for several document-level tasks including summarization and document classification. Previous approaches to RST parsing have used discriminative models; however, these are less sample efficient than generative models, and RST parsing datasets are typically small. In this paper, we present the first generative model for RST parsing. Our model is a document-level RNN grammar (RNNG) with a bottom-up traversal order. We show that, for our parser‘s traversal order, previous beam search algorithms for RNNGs have a left-branching bias which is ill-suited for RST parsing. We develop a novel beam search algorithm that keeps track of both structure-and word-generating actions without exhibit-ing this branching bias and results in absolute improvements of 6.8 and 2.9 on unlabelled and labelled F1 over previous algorithms. Overall, our generative model outperforms a discriminative model with the same features by 2.6 F1points and achieves performance comparable to the state-of-the-art, outperforming all published parsers from a recent replication study that do not use additional training data
%R 10.18653/v1/D19-1233
%U https://aclanthology.org/D19-1233/
%U https://doi.org/10.18653/v1/D19-1233
%P 2284-2295
Markdown (Informal)
[Neural Generative Rhetorical Structure Parsing](https://aclanthology.org/D19-1233/) (Mabona et al., EMNLP-IJCNLP 2019)
ACL
- Amandla Mabona, Laura Rimell, Stephen Clark, and Andreas Vlachos. 2019. Neural Generative Rhetorical Structure Parsing. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2284–2295, Hong Kong, China. Association for Computational Linguistics.