@inproceedings{thorne-etal-2019-evaluating,
title = "Evaluating adversarial attacks against multiple fact verification systems",
author = "Thorne, James and
Vlachos, Andreas and
Christodoulopoulos, Christos and
Mittal, Arpit",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1292/",
doi = "10.18653/v1/D19-1292",
pages = "2944--2953",
abstract = "Automated fact verification has been progressing owing to advancements in modeling and availability of large datasets. Due to the nature of the task, it is critical to understand the vulnerabilities of these systems against adversarial instances designed to make them predict incorrectly. We introduce two novel scoring metrics, attack potency and system resilience which take into account the correctness of the adversarial instances, an aspect often ignored in adversarial evaluations. We consider six fact verification systems from the recent Fact Extraction and VERification (FEVER) challenge: the four best-scoring ones and two baselines. We evaluate adversarial instances generated by a recently proposed state-of-the-art method, a paraphrasing method, and rule-based attacks devised for fact verification. We find that our rule-based attacks have higher potency, and that while the rankings among the top systems changed, they exhibited higher resilience than the baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="thorne-etal-2019-evaluating">
<titleInfo>
<title>Evaluating adversarial attacks against multiple fact verification systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automated fact verification has been progressing owing to advancements in modeling and availability of large datasets. Due to the nature of the task, it is critical to understand the vulnerabilities of these systems against adversarial instances designed to make them predict incorrectly. We introduce two novel scoring metrics, attack potency and system resilience which take into account the correctness of the adversarial instances, an aspect often ignored in adversarial evaluations. We consider six fact verification systems from the recent Fact Extraction and VERification (FEVER) challenge: the four best-scoring ones and two baselines. We evaluate adversarial instances generated by a recently proposed state-of-the-art method, a paraphrasing method, and rule-based attacks devised for fact verification. We find that our rule-based attacks have higher potency, and that while the rankings among the top systems changed, they exhibited higher resilience than the baselines.</abstract>
<identifier type="citekey">thorne-etal-2019-evaluating</identifier>
<identifier type="doi">10.18653/v1/D19-1292</identifier>
<location>
<url>https://aclanthology.org/D19-1292/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2944</start>
<end>2953</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating adversarial attacks against multiple fact verification systems
%A Thorne, James
%A Vlachos, Andreas
%A Christodoulopoulos, Christos
%A Mittal, Arpit
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F thorne-etal-2019-evaluating
%X Automated fact verification has been progressing owing to advancements in modeling and availability of large datasets. Due to the nature of the task, it is critical to understand the vulnerabilities of these systems against adversarial instances designed to make them predict incorrectly. We introduce two novel scoring metrics, attack potency and system resilience which take into account the correctness of the adversarial instances, an aspect often ignored in adversarial evaluations. We consider six fact verification systems from the recent Fact Extraction and VERification (FEVER) challenge: the four best-scoring ones and two baselines. We evaluate adversarial instances generated by a recently proposed state-of-the-art method, a paraphrasing method, and rule-based attacks devised for fact verification. We find that our rule-based attacks have higher potency, and that while the rankings among the top systems changed, they exhibited higher resilience than the baselines.
%R 10.18653/v1/D19-1292
%U https://aclanthology.org/D19-1292/
%U https://doi.org/10.18653/v1/D19-1292
%P 2944-2953
Markdown (Informal)
[Evaluating adversarial attacks against multiple fact verification systems](https://aclanthology.org/D19-1292/) (Thorne et al., EMNLP-IJCNLP 2019)
ACL
- James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2019. Evaluating adversarial attacks against multiple fact verification systems. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2944–2953, Hong Kong, China. Association for Computational Linguistics.