@inproceedings{li-etal-2019-attribute,
title = "Attribute-aware Sequence Network for Review Summarization",
author = "Li, Junjie and
Wang, Xuepeng and
Yin, Dawei and
Zong, Chengqing",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1297",
doi = "10.18653/v1/D19-1297",
pages = "3000--3010",
abstract = "Review summarization aims to generate a condensed summary for a review or multiple reviews. Existing review summarization systems mainly generate summary only based on review content and neglect the authors{'} attributes (e.g., gender, age, and occupation). In fact, when summarizing a review, users with different attributes usually pay attention to specific aspects and have their own word-using habits or writing styles. Therefore, we propose an Attribute-aware Sequence Network (ASN) to take the aforementioned users{'} characteristics into account, which includes three modules: an attribute encoder encodes the attribute preferences over the words; an attribute-aware review encoder adopts an attribute-based selective mechanism to select the important information of a review; and an attribute-aware summary decoder incorporates attribute embedding and attribute-specific word-using habits into word prediction. To validate our model, we collect a new dataset TripAtt, comprising 495,440 attribute-review-summary triplets with three kinds of attribute information: gender, age, and travel status. Extensive experiments show that ASN achieves state-of-the-art performance on review summarization in both auto-metric ROUGE and human evaluation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2019-attribute">
<titleInfo>
<title>Attribute-aware Sequence Network for Review Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuepeng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dawei</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Review summarization aims to generate a condensed summary for a review or multiple reviews. Existing review summarization systems mainly generate summary only based on review content and neglect the authors’ attributes (e.g., gender, age, and occupation). In fact, when summarizing a review, users with different attributes usually pay attention to specific aspects and have their own word-using habits or writing styles. Therefore, we propose an Attribute-aware Sequence Network (ASN) to take the aforementioned users’ characteristics into account, which includes three modules: an attribute encoder encodes the attribute preferences over the words; an attribute-aware review encoder adopts an attribute-based selective mechanism to select the important information of a review; and an attribute-aware summary decoder incorporates attribute embedding and attribute-specific word-using habits into word prediction. To validate our model, we collect a new dataset TripAtt, comprising 495,440 attribute-review-summary triplets with three kinds of attribute information: gender, age, and travel status. Extensive experiments show that ASN achieves state-of-the-art performance on review summarization in both auto-metric ROUGE and human evaluation.</abstract>
<identifier type="citekey">li-etal-2019-attribute</identifier>
<identifier type="doi">10.18653/v1/D19-1297</identifier>
<location>
<url>https://aclanthology.org/D19-1297</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3000</start>
<end>3010</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Attribute-aware Sequence Network for Review Summarization
%A Li, Junjie
%A Wang, Xuepeng
%A Yin, Dawei
%A Zong, Chengqing
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F li-etal-2019-attribute
%X Review summarization aims to generate a condensed summary for a review or multiple reviews. Existing review summarization systems mainly generate summary only based on review content and neglect the authors’ attributes (e.g., gender, age, and occupation). In fact, when summarizing a review, users with different attributes usually pay attention to specific aspects and have their own word-using habits or writing styles. Therefore, we propose an Attribute-aware Sequence Network (ASN) to take the aforementioned users’ characteristics into account, which includes three modules: an attribute encoder encodes the attribute preferences over the words; an attribute-aware review encoder adopts an attribute-based selective mechanism to select the important information of a review; and an attribute-aware summary decoder incorporates attribute embedding and attribute-specific word-using habits into word prediction. To validate our model, we collect a new dataset TripAtt, comprising 495,440 attribute-review-summary triplets with three kinds of attribute information: gender, age, and travel status. Extensive experiments show that ASN achieves state-of-the-art performance on review summarization in both auto-metric ROUGE and human evaluation.
%R 10.18653/v1/D19-1297
%U https://aclanthology.org/D19-1297
%U https://doi.org/10.18653/v1/D19-1297
%P 3000-3010
Markdown (Informal)
[Attribute-aware Sequence Network for Review Summarization](https://aclanthology.org/D19-1297) (Li et al., EMNLP-IJCNLP 2019)
ACL
- Junjie Li, Xuepeng Wang, Dawei Yin, and Chengqing Zong. 2019. Attribute-aware Sequence Network for Review Summarization. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3000–3010, Hong Kong, China. Association for Computational Linguistics.