@inproceedings{qian-etal-2019-exploring,
title = "Exploring Diverse Expressions for Paraphrase Generation",
author = "Qian, Lihua and
Qiu, Lin and
Zhang, Weinan and
Jiang, Xin and
Yu, Yong",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1313/",
doi = "10.18653/v1/D19-1313",
pages = "3173--3182",
abstract = "Paraphrasing plays an important role in various natural language processing (NLP) tasks, such as question answering, information retrieval and sentence simplification. Recently, neural generative models have shown promising results in paraphrase generation. However, prior work mainly focused on single paraphrase generation, while ignoring the fact that diversity is essential for enhancing generalization capability and robustness of downstream applications. Few works have been done to solve diverse paraphrase generation. In this paper, we propose a novel approach with two discriminators and multiple generators to generate a variety of different paraphrases. A reinforcement learning algorithm is applied to train our model. Our experiments on two real-world datasets demonstrate that our model not only gains a significant increase in diversity but also improves generation quality over several state-of-the-art baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qian-etal-2019-exploring">
<titleInfo>
<title>Exploring Diverse Expressions for Paraphrase Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lihua</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lin</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weinan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Paraphrasing plays an important role in various natural language processing (NLP) tasks, such as question answering, information retrieval and sentence simplification. Recently, neural generative models have shown promising results in paraphrase generation. However, prior work mainly focused on single paraphrase generation, while ignoring the fact that diversity is essential for enhancing generalization capability and robustness of downstream applications. Few works have been done to solve diverse paraphrase generation. In this paper, we propose a novel approach with two discriminators and multiple generators to generate a variety of different paraphrases. A reinforcement learning algorithm is applied to train our model. Our experiments on two real-world datasets demonstrate that our model not only gains a significant increase in diversity but also improves generation quality over several state-of-the-art baselines.</abstract>
<identifier type="citekey">qian-etal-2019-exploring</identifier>
<identifier type="doi">10.18653/v1/D19-1313</identifier>
<location>
<url>https://aclanthology.org/D19-1313/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3173</start>
<end>3182</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Diverse Expressions for Paraphrase Generation
%A Qian, Lihua
%A Qiu, Lin
%A Zhang, Weinan
%A Jiang, Xin
%A Yu, Yong
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F qian-etal-2019-exploring
%X Paraphrasing plays an important role in various natural language processing (NLP) tasks, such as question answering, information retrieval and sentence simplification. Recently, neural generative models have shown promising results in paraphrase generation. However, prior work mainly focused on single paraphrase generation, while ignoring the fact that diversity is essential for enhancing generalization capability and robustness of downstream applications. Few works have been done to solve diverse paraphrase generation. In this paper, we propose a novel approach with two discriminators and multiple generators to generate a variety of different paraphrases. A reinforcement learning algorithm is applied to train our model. Our experiments on two real-world datasets demonstrate that our model not only gains a significant increase in diversity but also improves generation quality over several state-of-the-art baselines.
%R 10.18653/v1/D19-1313
%U https://aclanthology.org/D19-1313/
%U https://doi.org/10.18653/v1/D19-1313
%P 3173-3182
Markdown (Informal)
[Exploring Diverse Expressions for Paraphrase Generation](https://aclanthology.org/D19-1313/) (Qian et al., EMNLP-IJCNLP 2019)
ACL
- Lihua Qian, Lin Qiu, Weinan Zhang, Xin Jiang, and Yong Yu. 2019. Exploring Diverse Expressions for Paraphrase Generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3173–3182, Hong Kong, China. Association for Computational Linguistics.