@inproceedings{schuster-etal-2019-towards,
title = "Towards Debiasing Fact Verification Models",
author = "Schuster, Tal and
Shah, Darsh and
Yeo, Yun Jie Serene and
Roberto Filizzola Ortiz, Daniel and
Santus, Enrico and
Barzilay, Regina",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1341/",
doi = "10.18653/v1/D19-1341",
pages = "3419--3425",
abstract = "Fact verification requires validating a claim in the context of evidence. We show, however, that in the popular FEVER dataset this might not necessarily be the case. Claim-only classifiers perform competitively with top evidence-aware models. In this paper, we investigate the cause of this phenomenon, identifying strong cues for predicting labels solely based on the claim, without considering any evidence. We create an evaluation set that avoids those idiosyncrasies. The performance of FEVER-trained models significantly drops when evaluated on this test set. Therefore, we introduce a regularization method which alleviates the effect of bias in the training data, obtaining improvements on the newly created test set. This work is a step towards a more sound evaluation of reasoning capabilities in fact verification models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schuster-etal-2019-towards">
<titleInfo>
<title>Towards Debiasing Fact Verification Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Schuster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Darsh</namePart>
<namePart type="family">Shah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun</namePart>
<namePart type="given">Jie</namePart>
<namePart type="given">Serene</namePart>
<namePart type="family">Yeo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Roberto Filizzola Ortiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Fact verification requires validating a claim in the context of evidence. We show, however, that in the popular FEVER dataset this might not necessarily be the case. Claim-only classifiers perform competitively with top evidence-aware models. In this paper, we investigate the cause of this phenomenon, identifying strong cues for predicting labels solely based on the claim, without considering any evidence. We create an evaluation set that avoids those idiosyncrasies. The performance of FEVER-trained models significantly drops when evaluated on this test set. Therefore, we introduce a regularization method which alleviates the effect of bias in the training data, obtaining improvements on the newly created test set. This work is a step towards a more sound evaluation of reasoning capabilities in fact verification models.</abstract>
<identifier type="citekey">schuster-etal-2019-towards</identifier>
<identifier type="doi">10.18653/v1/D19-1341</identifier>
<location>
<url>https://aclanthology.org/D19-1341/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3419</start>
<end>3425</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Debiasing Fact Verification Models
%A Schuster, Tal
%A Shah, Darsh
%A Yeo, Yun Jie Serene
%A Roberto Filizzola Ortiz, Daniel
%A Santus, Enrico
%A Barzilay, Regina
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F schuster-etal-2019-towards
%X Fact verification requires validating a claim in the context of evidence. We show, however, that in the popular FEVER dataset this might not necessarily be the case. Claim-only classifiers perform competitively with top evidence-aware models. In this paper, we investigate the cause of this phenomenon, identifying strong cues for predicting labels solely based on the claim, without considering any evidence. We create an evaluation set that avoids those idiosyncrasies. The performance of FEVER-trained models significantly drops when evaluated on this test set. Therefore, we introduce a regularization method which alleviates the effect of bias in the training data, obtaining improvements on the newly created test set. This work is a step towards a more sound evaluation of reasoning capabilities in fact verification models.
%R 10.18653/v1/D19-1341
%U https://aclanthology.org/D19-1341/
%U https://doi.org/10.18653/v1/D19-1341
%P 3419-3425
Markdown (Informal)
[Towards Debiasing Fact Verification Models](https://aclanthology.org/D19-1341/) (Schuster et al., EMNLP-IJCNLP 2019)
ACL
- Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel Roberto Filizzola Ortiz, Enrico Santus, and Regina Barzilay. 2019. Towards Debiasing Fact Verification Models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3419–3425, Hong Kong, China. Association for Computational Linguistics.