@inproceedings{wang-etal-2019-investigating,
title = "Investigating Dynamic Routing in Tree-Structured {LSTM} for Sentiment Analysis",
author = "Wang, Jin and
Yu, Liang-Chih and
Lai, K. Robert and
Zhang, Xuejie",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1343",
doi = "10.18653/v1/D19-1343",
pages = "3432--3437",
abstract = "Deep neural network models such as long short-term memory (LSTM) and tree-LSTM have been proven to be effective for sentiment analysis. However, sequential LSTM is a bias model wherein the words in the tail of a sentence are more heavily emphasized than those in the header for building sentence representations. Even tree-LSTM, with useful structural information, could not avoid the bias problem because the root node will be dominant and the nodes in the bottom of the parse tree will be less emphasized even though they may contain salient information. To overcome the bias problem, this study proposes a capsule tree-LSTM model, introducing a dynamic routing algorithm as an aggregation layer to build sentence representation by assigning different weights to nodes according to their contributions to prediction. Experiments on Stanford Sentiment Treebank (SST) for sentiment classification and EmoBank for regression show that the proposed method improved the performance of tree-LSTM and other neural network models. In addition, the deeper the tree structure, the bigger the improvement.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2019-investigating">
<titleInfo>
<title>Investigating Dynamic Routing in Tree-Structured LSTM for Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang-Chih</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="given">Robert</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep neural network models such as long short-term memory (LSTM) and tree-LSTM have been proven to be effective for sentiment analysis. However, sequential LSTM is a bias model wherein the words in the tail of a sentence are more heavily emphasized than those in the header for building sentence representations. Even tree-LSTM, with useful structural information, could not avoid the bias problem because the root node will be dominant and the nodes in the bottom of the parse tree will be less emphasized even though they may contain salient information. To overcome the bias problem, this study proposes a capsule tree-LSTM model, introducing a dynamic routing algorithm as an aggregation layer to build sentence representation by assigning different weights to nodes according to their contributions to prediction. Experiments on Stanford Sentiment Treebank (SST) for sentiment classification and EmoBank for regression show that the proposed method improved the performance of tree-LSTM and other neural network models. In addition, the deeper the tree structure, the bigger the improvement.</abstract>
<identifier type="citekey">wang-etal-2019-investigating</identifier>
<identifier type="doi">10.18653/v1/D19-1343</identifier>
<location>
<url>https://aclanthology.org/D19-1343</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3432</start>
<end>3437</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating Dynamic Routing in Tree-Structured LSTM for Sentiment Analysis
%A Wang, Jin
%A Yu, Liang-Chih
%A Lai, K. Robert
%A Zhang, Xuejie
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F wang-etal-2019-investigating
%X Deep neural network models such as long short-term memory (LSTM) and tree-LSTM have been proven to be effective for sentiment analysis. However, sequential LSTM is a bias model wherein the words in the tail of a sentence are more heavily emphasized than those in the header for building sentence representations. Even tree-LSTM, with useful structural information, could not avoid the bias problem because the root node will be dominant and the nodes in the bottom of the parse tree will be less emphasized even though they may contain salient information. To overcome the bias problem, this study proposes a capsule tree-LSTM model, introducing a dynamic routing algorithm as an aggregation layer to build sentence representation by assigning different weights to nodes according to their contributions to prediction. Experiments on Stanford Sentiment Treebank (SST) for sentiment classification and EmoBank for regression show that the proposed method improved the performance of tree-LSTM and other neural network models. In addition, the deeper the tree structure, the bigger the improvement.
%R 10.18653/v1/D19-1343
%U https://aclanthology.org/D19-1343
%U https://doi.org/10.18653/v1/D19-1343
%P 3432-3437
Markdown (Informal)
[Investigating Dynamic Routing in Tree-Structured LSTM for Sentiment Analysis](https://aclanthology.org/D19-1343) (Wang et al., EMNLP-IJCNLP 2019)
ACL
- Jin Wang, Liang-Chih Yu, K. Robert Lai, and Xuejie Zhang. 2019. Investigating Dynamic Routing in Tree-Structured LSTM for Sentiment Analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3432–3437, Hong Kong, China. Association for Computational Linguistics.