@inproceedings{herzig-berant-2019-dont,
title = "Don`t paraphrase, detect! Rapid and Effective Data Collection for Semantic Parsing",
author = "Herzig, Jonathan and
Berant, Jonathan",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1394/",
doi = "10.18653/v1/D19-1394",
pages = "3810--3820",
abstract = "A major hurdle on the road to conversational interfaces is the difficulty in collecting data that maps language utterances to logical forms. One prominent approach for data collection has been to automatically generate pseudo-language paired with logical forms, and paraphrase the pseudo-language to natural language through crowdsourcing (Wang et al., 2015). However, this data collection procedure often leads to low performance on real data, due to a mismatch between the true distribution of examples and the distribution induced by the data collection procedure. In this paper, we thoroughly analyze two sources of mismatch in this process: the mismatch in logical form distribution and the mismatch in language distribution between the true and induced distributions. We quantify the effects of these mismatches, and propose a new data collection approach that mitigates them. Assuming access to unlabeled utterances from the true distribution, we combine crowdsourcing with a paraphrase model to detect correct logical forms for the unlabeled utterances. On two datasets, our method leads to 70.6 accuracy on average on the true distribution, compared to 51.3 in paraphrasing-based data collection."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="herzig-berant-2019-dont">
<titleInfo>
<title>Don‘t paraphrase, detect! Rapid and Effective Data Collection for Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Herzig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A major hurdle on the road to conversational interfaces is the difficulty in collecting data that maps language utterances to logical forms. One prominent approach for data collection has been to automatically generate pseudo-language paired with logical forms, and paraphrase the pseudo-language to natural language through crowdsourcing (Wang et al., 2015). However, this data collection procedure often leads to low performance on real data, due to a mismatch between the true distribution of examples and the distribution induced by the data collection procedure. In this paper, we thoroughly analyze two sources of mismatch in this process: the mismatch in logical form distribution and the mismatch in language distribution between the true and induced distributions. We quantify the effects of these mismatches, and propose a new data collection approach that mitigates them. Assuming access to unlabeled utterances from the true distribution, we combine crowdsourcing with a paraphrase model to detect correct logical forms for the unlabeled utterances. On two datasets, our method leads to 70.6 accuracy on average on the true distribution, compared to 51.3 in paraphrasing-based data collection.</abstract>
<identifier type="citekey">herzig-berant-2019-dont</identifier>
<identifier type="doi">10.18653/v1/D19-1394</identifier>
<location>
<url>https://aclanthology.org/D19-1394/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3810</start>
<end>3820</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Don‘t paraphrase, detect! Rapid and Effective Data Collection for Semantic Parsing
%A Herzig, Jonathan
%A Berant, Jonathan
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F herzig-berant-2019-dont
%X A major hurdle on the road to conversational interfaces is the difficulty in collecting data that maps language utterances to logical forms. One prominent approach for data collection has been to automatically generate pseudo-language paired with logical forms, and paraphrase the pseudo-language to natural language through crowdsourcing (Wang et al., 2015). However, this data collection procedure often leads to low performance on real data, due to a mismatch between the true distribution of examples and the distribution induced by the data collection procedure. In this paper, we thoroughly analyze two sources of mismatch in this process: the mismatch in logical form distribution and the mismatch in language distribution between the true and induced distributions. We quantify the effects of these mismatches, and propose a new data collection approach that mitigates them. Assuming access to unlabeled utterances from the true distribution, we combine crowdsourcing with a paraphrase model to detect correct logical forms for the unlabeled utterances. On two datasets, our method leads to 70.6 accuracy on average on the true distribution, compared to 51.3 in paraphrasing-based data collection.
%R 10.18653/v1/D19-1394
%U https://aclanthology.org/D19-1394/
%U https://doi.org/10.18653/v1/D19-1394
%P 3810-3820
Markdown (Informal)
[Don’t paraphrase, detect! Rapid and Effective Data Collection for Semantic Parsing](https://aclanthology.org/D19-1394/) (Herzig & Berant, EMNLP-IJCNLP 2019)
ACL