@inproceedings{hu-etal-2019-improving,
title = "Improving Distantly-Supervised Relation Extraction with Joint Label Embedding",
author = "Hu, Linmei and
Zhang, Luhao and
Shi, Chuan and
Nie, Liqiang and
Guan, Weili and
Yang, Cheng",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1395/",
doi = "10.18653/v1/D19-1395",
pages = "3821--3829",
abstract = "Distantly-supervised relation extraction has proven to be effective to find relational facts from texts. However, the existing approaches treat labels as independent and meaningless one-hot vectors, which cause a loss of potential label information for selecting valid instances. In this paper, we propose a novel multi-layer attention-based model to improve relation extraction with joint label embedding. The model makes full use of both structural information from Knowledge Graphs and textual information from entity descriptions to learn label embeddings through gating integration while avoiding the imposed noise with an attention mechanism. Then the learned label embeddings are used as another atten- tion over the instances (whose embeddings are also enhanced with the entity descriptions) for improving relation extraction. Extensive experiments demonstrate that our model significantly outperforms state-of-the-art methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hu-etal-2019-improving">
<titleInfo>
<title>Improving Distantly-Supervised Relation Extraction with Joint Label Embedding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Linmei</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luhao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuan</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liqiang</namePart>
<namePart type="family">Nie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weili</namePart>
<namePart type="family">Guan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Distantly-supervised relation extraction has proven to be effective to find relational facts from texts. However, the existing approaches treat labels as independent and meaningless one-hot vectors, which cause a loss of potential label information for selecting valid instances. In this paper, we propose a novel multi-layer attention-based model to improve relation extraction with joint label embedding. The model makes full use of both structural information from Knowledge Graphs and textual information from entity descriptions to learn label embeddings through gating integration while avoiding the imposed noise with an attention mechanism. Then the learned label embeddings are used as another atten- tion over the instances (whose embeddings are also enhanced with the entity descriptions) for improving relation extraction. Extensive experiments demonstrate that our model significantly outperforms state-of-the-art methods.</abstract>
<identifier type="citekey">hu-etal-2019-improving</identifier>
<identifier type="doi">10.18653/v1/D19-1395</identifier>
<location>
<url>https://aclanthology.org/D19-1395/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3821</start>
<end>3829</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Distantly-Supervised Relation Extraction with Joint Label Embedding
%A Hu, Linmei
%A Zhang, Luhao
%A Shi, Chuan
%A Nie, Liqiang
%A Guan, Weili
%A Yang, Cheng
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F hu-etal-2019-improving
%X Distantly-supervised relation extraction has proven to be effective to find relational facts from texts. However, the existing approaches treat labels as independent and meaningless one-hot vectors, which cause a loss of potential label information for selecting valid instances. In this paper, we propose a novel multi-layer attention-based model to improve relation extraction with joint label embedding. The model makes full use of both structural information from Knowledge Graphs and textual information from entity descriptions to learn label embeddings through gating integration while avoiding the imposed noise with an attention mechanism. Then the learned label embeddings are used as another atten- tion over the instances (whose embeddings are also enhanced with the entity descriptions) for improving relation extraction. Extensive experiments demonstrate that our model significantly outperforms state-of-the-art methods.
%R 10.18653/v1/D19-1395
%U https://aclanthology.org/D19-1395/
%U https://doi.org/10.18653/v1/D19-1395
%P 3821-3829
Markdown (Informal)
[Improving Distantly-Supervised Relation Extraction with Joint Label Embedding](https://aclanthology.org/D19-1395/) (Hu et al., EMNLP-IJCNLP 2019)
ACL
- Linmei Hu, Luhao Zhang, Chuan Shi, Liqiang Nie, Weili Guan, and Cheng Yang. 2019. Improving Distantly-Supervised Relation Extraction with Joint Label Embedding. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3821–3829, Hong Kong, China. Association for Computational Linguistics.