@inproceedings{perkins-yang-2019-dialog,
    title = "Dialog Intent Induction with Deep Multi-View Clustering",
    author = "Perkins, Hugh  and
      Yang, Yi",
    editor = "Inui, Kentaro  and
      Jiang, Jing  and
      Ng, Vincent  and
      Wan, Xiaojun",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-1413/",
    doi = "10.18653/v1/D19-1413",
    pages = "4016--4025",
    abstract = "We introduce the dialog intent induction task and present a novel deep multi-view clustering approach to tackle the problem. Dialog intent induction aims at discovering user intents from user query utterances in human-human conversations such as dialogs between customer support agents and customers. Motivated by the intuition that a dialog intent is not only expressed in the user query utterance but also captured in the rest of the dialog, we split a conversation into two independent views and exploit multi-view clustering techniques for inducing the dialog intent. In par- ticular, we propose alternating-view k-means (AV-KMEANS) for joint multi-view represen- tation learning and clustering analysis. The key innovation is that the instance-view representations are updated iteratively by predicting the cluster assignment obtained from the alternative view, so that the multi-view representations of the instances lead to similar cluster assignments. Experiments on two public datasets show that AV-KMEANS can induce better dialog intent clusters than state-of-the-art unsupervised representation learning methods and standard multi-view clustering approaches."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="perkins-yang-2019-dialog">
    <titleInfo>
        <title>Dialog Intent Induction with Deep Multi-View Clustering</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Hugh</namePart>
        <namePart type="family">Perkins</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yi</namePart>
        <namePart type="family">Yang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Kentaro</namePart>
            <namePart type="family">Inui</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jing</namePart>
            <namePart type="family">Jiang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Vincent</namePart>
            <namePart type="family">Ng</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaojun</namePart>
            <namePart type="family">Wan</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We introduce the dialog intent induction task and present a novel deep multi-view clustering approach to tackle the problem. Dialog intent induction aims at discovering user intents from user query utterances in human-human conversations such as dialogs between customer support agents and customers. Motivated by the intuition that a dialog intent is not only expressed in the user query utterance but also captured in the rest of the dialog, we split a conversation into two independent views and exploit multi-view clustering techniques for inducing the dialog intent. In par- ticular, we propose alternating-view k-means (AV-KMEANS) for joint multi-view represen- tation learning and clustering analysis. The key innovation is that the instance-view representations are updated iteratively by predicting the cluster assignment obtained from the alternative view, so that the multi-view representations of the instances lead to similar cluster assignments. Experiments on two public datasets show that AV-KMEANS can induce better dialog intent clusters than state-of-the-art unsupervised representation learning methods and standard multi-view clustering approaches.</abstract>
    <identifier type="citekey">perkins-yang-2019-dialog</identifier>
    <identifier type="doi">10.18653/v1/D19-1413</identifier>
    <location>
        <url>https://aclanthology.org/D19-1413/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>4016</start>
            <end>4025</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dialog Intent Induction with Deep Multi-View Clustering
%A Perkins, Hugh
%A Yang, Yi
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F perkins-yang-2019-dialog
%X We introduce the dialog intent induction task and present a novel deep multi-view clustering approach to tackle the problem. Dialog intent induction aims at discovering user intents from user query utterances in human-human conversations such as dialogs between customer support agents and customers. Motivated by the intuition that a dialog intent is not only expressed in the user query utterance but also captured in the rest of the dialog, we split a conversation into two independent views and exploit multi-view clustering techniques for inducing the dialog intent. In par- ticular, we propose alternating-view k-means (AV-KMEANS) for joint multi-view represen- tation learning and clustering analysis. The key innovation is that the instance-view representations are updated iteratively by predicting the cluster assignment obtained from the alternative view, so that the multi-view representations of the instances lead to similar cluster assignments. Experiments on two public datasets show that AV-KMEANS can induce better dialog intent clusters than state-of-the-art unsupervised representation learning methods and standard multi-view clustering approaches.
%R 10.18653/v1/D19-1413
%U https://aclanthology.org/D19-1413/
%U https://doi.org/10.18653/v1/D19-1413
%P 4016-4025
Markdown (Informal)
[Dialog Intent Induction with Deep Multi-View Clustering](https://aclanthology.org/D19-1413/) (Perkins & Yang, EMNLP-IJCNLP 2019)
ACL
- Hugh Perkins and Yi Yang. 2019. Dialog Intent Induction with Deep Multi-View Clustering. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4016–4025, Hong Kong, China. Association for Computational Linguistics.