@inproceedings{del-tredici-etal-2019-shall,
title = "You Shall Know a User by the Company It Keeps: Dynamic Representations for Social Media Users in {NLP}",
author = "Del Tredici, Marco and
Marcheggiani, Diego and
Schulte im Walde, Sabine and
Fern{\'a}ndez, Raquel",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1477",
doi = "10.18653/v1/D19-1477",
pages = "4707--4717",
abstract = "Information about individuals can help to better understand what they say, particularly in social media where texts are short. Current approaches to modelling social media users pay attention to their social connections, but exploit this information in a static way, treating all connections uniformly. This ignores the fact, well known in sociolinguistics, that an individual may be part of several communities which are not equally relevant in all communicative situations. We present a model based on Graph Attention Networks that captures this observation. It dynamically explores the social graph of a user, computes a user representation given the most relevant connections for a target task, and combines it with linguistic information to make a prediction. We apply our model to three different tasks, evaluate it against alternative models, and analyse the results extensively, showing that it significantly outperforms other current methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="del-tredici-etal-2019-shall">
<titleInfo>
<title>You Shall Know a User by the Company It Keeps: Dynamic Representations for Social Media Users in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Del Tredici</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diego</namePart>
<namePart type="family">Marcheggiani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Schulte im Walde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raquel</namePart>
<namePart type="family">Fernández</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Information about individuals can help to better understand what they say, particularly in social media where texts are short. Current approaches to modelling social media users pay attention to their social connections, but exploit this information in a static way, treating all connections uniformly. This ignores the fact, well known in sociolinguistics, that an individual may be part of several communities which are not equally relevant in all communicative situations. We present a model based on Graph Attention Networks that captures this observation. It dynamically explores the social graph of a user, computes a user representation given the most relevant connections for a target task, and combines it with linguistic information to make a prediction. We apply our model to three different tasks, evaluate it against alternative models, and analyse the results extensively, showing that it significantly outperforms other current methods.</abstract>
<identifier type="citekey">del-tredici-etal-2019-shall</identifier>
<identifier type="doi">10.18653/v1/D19-1477</identifier>
<location>
<url>https://aclanthology.org/D19-1477</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>4707</start>
<end>4717</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T You Shall Know a User by the Company It Keeps: Dynamic Representations for Social Media Users in NLP
%A Del Tredici, Marco
%A Marcheggiani, Diego
%A Schulte im Walde, Sabine
%A Fernández, Raquel
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F del-tredici-etal-2019-shall
%X Information about individuals can help to better understand what they say, particularly in social media where texts are short. Current approaches to modelling social media users pay attention to their social connections, but exploit this information in a static way, treating all connections uniformly. This ignores the fact, well known in sociolinguistics, that an individual may be part of several communities which are not equally relevant in all communicative situations. We present a model based on Graph Attention Networks that captures this observation. It dynamically explores the social graph of a user, computes a user representation given the most relevant connections for a target task, and combines it with linguistic information to make a prediction. We apply our model to three different tasks, evaluate it against alternative models, and analyse the results extensively, showing that it significantly outperforms other current methods.
%R 10.18653/v1/D19-1477
%U https://aclanthology.org/D19-1477
%U https://doi.org/10.18653/v1/D19-1477
%P 4707-4717
Markdown (Informal)
[You Shall Know a User by the Company It Keeps: Dynamic Representations for Social Media Users in NLP](https://aclanthology.org/D19-1477) (Del Tredici et al., EMNLP-IJCNLP 2019)
ACL