@inproceedings{elgohary-etal-2019-unpack,
title = "Can You Unpack That? Learning to Rewrite Questions-in-Context",
author = "Elgohary, Ahmed and
Peskov, Denis and
Boyd-Graber, Jordan",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1605",
doi = "10.18653/v1/D19-1605",
pages = "5918--5924",
abstract = "Question answering is an AI-complete problem, but existing datasets lack key elements of language understanding such as coreference and ellipsis resolution. We consider sequential question answering: multiple questions are asked one-by-one in a conversation between a questioner and an answerer. Answering these questions is only possible through understanding the conversation history. We introduce the task of question-in-context rewriting: given the context of a conversation{'}s history, rewrite a context-dependent into a self-contained question with the same answer. We construct, CANARD, a dataset of 40,527 questions based on QuAC (Choi et al., 2018) and train Seq2Seq models for incorporating context into standalone questions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="elgohary-etal-2019-unpack">
<titleInfo>
<title>Can You Unpack That? Learning to Rewrite Questions-in-Context</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Elgohary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Peskov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Question answering is an AI-complete problem, but existing datasets lack key elements of language understanding such as coreference and ellipsis resolution. We consider sequential question answering: multiple questions are asked one-by-one in a conversation between a questioner and an answerer. Answering these questions is only possible through understanding the conversation history. We introduce the task of question-in-context rewriting: given the context of a conversation’s history, rewrite a context-dependent into a self-contained question with the same answer. We construct, CANARD, a dataset of 40,527 questions based on QuAC (Choi et al., 2018) and train Seq2Seq models for incorporating context into standalone questions.</abstract>
<identifier type="citekey">elgohary-etal-2019-unpack</identifier>
<identifier type="doi">10.18653/v1/D19-1605</identifier>
<location>
<url>https://aclanthology.org/D19-1605</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>5918</start>
<end>5924</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can You Unpack That? Learning to Rewrite Questions-in-Context
%A Elgohary, Ahmed
%A Peskov, Denis
%A Boyd-Graber, Jordan
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F elgohary-etal-2019-unpack
%X Question answering is an AI-complete problem, but existing datasets lack key elements of language understanding such as coreference and ellipsis resolution. We consider sequential question answering: multiple questions are asked one-by-one in a conversation between a questioner and an answerer. Answering these questions is only possible through understanding the conversation history. We introduce the task of question-in-context rewriting: given the context of a conversation’s history, rewrite a context-dependent into a self-contained question with the same answer. We construct, CANARD, a dataset of 40,527 questions based on QuAC (Choi et al., 2018) and train Seq2Seq models for incorporating context into standalone questions.
%R 10.18653/v1/D19-1605
%U https://aclanthology.org/D19-1605
%U https://doi.org/10.18653/v1/D19-1605
%P 5918-5924
Markdown (Informal)
[Can You Unpack That? Learning to Rewrite Questions-in-Context](https://aclanthology.org/D19-1605) (Elgohary et al., EMNLP-IJCNLP 2019)
ACL
- Ahmed Elgohary, Denis Peskov, and Jordan Boyd-Graber. 2019. Can You Unpack That? Learning to Rewrite Questions-in-Context. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5918–5924, Hong Kong, China. Association for Computational Linguistics.