@inproceedings{watanabe-etal-2019-multi,
    title = "Multi-Task Learning for Chemical Named Entity Recognition with Chemical Compound Paraphrasing",
    author = "Watanabe, Taiki  and
      Tamura, Akihiro  and
      Ninomiya, Takashi  and
      Makino, Takuya  and
      Iwakura, Tomoya",
    editor = "Inui, Kentaro  and
      Jiang, Jing  and
      Ng, Vincent  and
      Wan, Xiaojun",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-1648/",
    doi = "10.18653/v1/D19-1648",
    pages = "6244--6249",
    abstract = "We propose a method to improve named entity recognition (NER) for chemical compounds using multi-task learning by jointly training a chemical NER model and a chemical com- pound paraphrase model. Our method en- ables the long short-term memory (LSTM) of the NER model to capture chemical com- pound paraphrases by sharing the parameters of the LSTM and character embeddings be- tween the two models. The experimental re- sults on the BioCreative IV{'}s CHEMDNER task show that our method improves chemi- cal NER and achieves state-of-the-art perfor- mance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="watanabe-etal-2019-multi">
    <titleInfo>
        <title>Multi-Task Learning for Chemical Named Entity Recognition with Chemical Compound Paraphrasing</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Taiki</namePart>
        <namePart type="family">Watanabe</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Akihiro</namePart>
        <namePart type="family">Tamura</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Takashi</namePart>
        <namePart type="family">Ninomiya</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Takuya</namePart>
        <namePart type="family">Makino</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tomoya</namePart>
        <namePart type="family">Iwakura</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Kentaro</namePart>
            <namePart type="family">Inui</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jing</namePart>
            <namePart type="family">Jiang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Vincent</namePart>
            <namePart type="family">Ng</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaojun</namePart>
            <namePart type="family">Wan</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose a method to improve named entity recognition (NER) for chemical compounds using multi-task learning by jointly training a chemical NER model and a chemical com- pound paraphrase model. Our method en- ables the long short-term memory (LSTM) of the NER model to capture chemical com- pound paraphrases by sharing the parameters of the LSTM and character embeddings be- tween the two models. The experimental re- sults on the BioCreative IV’s CHEMDNER task show that our method improves chemi- cal NER and achieves state-of-the-art perfor- mance.</abstract>
    <identifier type="citekey">watanabe-etal-2019-multi</identifier>
    <identifier type="doi">10.18653/v1/D19-1648</identifier>
    <location>
        <url>https://aclanthology.org/D19-1648/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>6244</start>
            <end>6249</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Task Learning for Chemical Named Entity Recognition with Chemical Compound Paraphrasing
%A Watanabe, Taiki
%A Tamura, Akihiro
%A Ninomiya, Takashi
%A Makino, Takuya
%A Iwakura, Tomoya
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F watanabe-etal-2019-multi
%X We propose a method to improve named entity recognition (NER) for chemical compounds using multi-task learning by jointly training a chemical NER model and a chemical com- pound paraphrase model. Our method en- ables the long short-term memory (LSTM) of the NER model to capture chemical com- pound paraphrases by sharing the parameters of the LSTM and character embeddings be- tween the two models. The experimental re- sults on the BioCreative IV’s CHEMDNER task show that our method improves chemi- cal NER and achieves state-of-the-art perfor- mance.
%R 10.18653/v1/D19-1648
%U https://aclanthology.org/D19-1648/
%U https://doi.org/10.18653/v1/D19-1648
%P 6244-6249
Markdown (Informal)
[Multi-Task Learning for Chemical Named Entity Recognition with Chemical Compound Paraphrasing](https://aclanthology.org/D19-1648/) (Watanabe et al., EMNLP-IJCNLP 2019)
ACL