@inproceedings{hurtado-bodell-etal-2019-interpretable,
title = "Interpretable Word Embeddings via Informative Priors",
author = "Hurtado Bodell, Miriam and
Arvidsson, Martin and
Magnusson, M{\r{a}}ns",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1661/",
doi = "10.18653/v1/D19-1661",
pages = "6323--6329",
abstract = "Word embeddings have demonstrated strong performance on NLP tasks. However, lack of interpretability and the unsupervised nature of word embeddings have limited their use within computational social science and digital humanities. We propose the use of informative priors to create interpretable and domain-informed dimensions for probabilistic word embeddings. Experimental results show that sensible priors can capture latent semantic concepts better than or on-par with the current state of the art, while retaining the simplicity and generalizability of using priors."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hurtado-bodell-etal-2019-interpretable">
<titleInfo>
<title>Interpretable Word Embeddings via Informative Priors</title>
</titleInfo>
<name type="personal">
<namePart type="given">Miriam</namePart>
<namePart type="family">Hurtado Bodell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Arvidsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Måns</namePart>
<namePart type="family">Magnusson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embeddings have demonstrated strong performance on NLP tasks. However, lack of interpretability and the unsupervised nature of word embeddings have limited their use within computational social science and digital humanities. We propose the use of informative priors to create interpretable and domain-informed dimensions for probabilistic word embeddings. Experimental results show that sensible priors can capture latent semantic concepts better than or on-par with the current state of the art, while retaining the simplicity and generalizability of using priors.</abstract>
<identifier type="citekey">hurtado-bodell-etal-2019-interpretable</identifier>
<identifier type="doi">10.18653/v1/D19-1661</identifier>
<location>
<url>https://aclanthology.org/D19-1661/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>6323</start>
<end>6329</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interpretable Word Embeddings via Informative Priors
%A Hurtado Bodell, Miriam
%A Arvidsson, Martin
%A Magnusson, Måns
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F hurtado-bodell-etal-2019-interpretable
%X Word embeddings have demonstrated strong performance on NLP tasks. However, lack of interpretability and the unsupervised nature of word embeddings have limited their use within computational social science and digital humanities. We propose the use of informative priors to create interpretable and domain-informed dimensions for probabilistic word embeddings. Experimental results show that sensible priors can capture latent semantic concepts better than or on-par with the current state of the art, while retaining the simplicity and generalizability of using priors.
%R 10.18653/v1/D19-1661
%U https://aclanthology.org/D19-1661/
%U https://doi.org/10.18653/v1/D19-1661
%P 6323-6329
Markdown (Informal)
[Interpretable Word Embeddings via Informative Priors](https://aclanthology.org/D19-1661/) (Hurtado Bodell et al., EMNLP-IJCNLP 2019)
ACL
- Miriam Hurtado Bodell, Martin Arvidsson, and Måns Magnusson. 2019. Interpretable Word Embeddings via Informative Priors. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6323–6329, Hong Kong, China. Association for Computational Linguistics.