@inproceedings{barrett-etal-2019-adversarial,
title = "Adversarial Removal of Demographic Attributes Revisited",
author = "Barrett, Maria and
Kementchedjhieva, Yova and
Elazar, Yanai and
Elliott, Desmond and
S{\o}gaard, Anders",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1662/",
doi = "10.18653/v1/D19-1662",
pages = "6330--6335",
abstract = "Elazar and Goldberg (2018) showed that protected attributes can be extracted from the representations of a debiased neural network for mention detection at above-chance levels, by evaluating a diagnostic classifier on a held-out subsample of the data it was trained on. We revisit their experiments and conduct a series of follow-up experiments showing that, in fact, the diagnostic classifier generalizes poorly to both new in-domain samples and new domains, indicating that it relies on correlations specific to their particular data sample. We further show that a diagnostic classifier trained on the biased baseline neural network also does not generalize to new samples. In other words, the biases detected in Elazar and Goldberg (2018) seem restricted to their particular data sample, and would therefore not bias the decisions of the model on new samples, whether in-domain or out-of-domain. In light of this, we discuss better methodologies for detecting bias in our models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barrett-etal-2019-adversarial">
<titleInfo>
<title>Adversarial Removal of Demographic Attributes Revisited</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yova</namePart>
<namePart type="family">Kementchedjhieva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanai</namePart>
<namePart type="family">Elazar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Desmond</namePart>
<namePart type="family">Elliott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Elazar and Goldberg (2018) showed that protected attributes can be extracted from the representations of a debiased neural network for mention detection at above-chance levels, by evaluating a diagnostic classifier on a held-out subsample of the data it was trained on. We revisit their experiments and conduct a series of follow-up experiments showing that, in fact, the diagnostic classifier generalizes poorly to both new in-domain samples and new domains, indicating that it relies on correlations specific to their particular data sample. We further show that a diagnostic classifier trained on the biased baseline neural network also does not generalize to new samples. In other words, the biases detected in Elazar and Goldberg (2018) seem restricted to their particular data sample, and would therefore not bias the decisions of the model on new samples, whether in-domain or out-of-domain. In light of this, we discuss better methodologies for detecting bias in our models.</abstract>
<identifier type="citekey">barrett-etal-2019-adversarial</identifier>
<identifier type="doi">10.18653/v1/D19-1662</identifier>
<location>
<url>https://aclanthology.org/D19-1662/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>6330</start>
<end>6335</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adversarial Removal of Demographic Attributes Revisited
%A Barrett, Maria
%A Kementchedjhieva, Yova
%A Elazar, Yanai
%A Elliott, Desmond
%A Søgaard, Anders
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F barrett-etal-2019-adversarial
%X Elazar and Goldberg (2018) showed that protected attributes can be extracted from the representations of a debiased neural network for mention detection at above-chance levels, by evaluating a diagnostic classifier on a held-out subsample of the data it was trained on. We revisit their experiments and conduct a series of follow-up experiments showing that, in fact, the diagnostic classifier generalizes poorly to both new in-domain samples and new domains, indicating that it relies on correlations specific to their particular data sample. We further show that a diagnostic classifier trained on the biased baseline neural network also does not generalize to new samples. In other words, the biases detected in Elazar and Goldberg (2018) seem restricted to their particular data sample, and would therefore not bias the decisions of the model on new samples, whether in-domain or out-of-domain. In light of this, we discuss better methodologies for detecting bias in our models.
%R 10.18653/v1/D19-1662
%U https://aclanthology.org/D19-1662/
%U https://doi.org/10.18653/v1/D19-1662
%P 6330-6335
Markdown (Informal)
[Adversarial Removal of Demographic Attributes Revisited](https://aclanthology.org/D19-1662/) (Barrett et al., EMNLP-IJCNLP 2019)
ACL
- Maria Barrett, Yova Kementchedjhieva, Yanai Elazar, Desmond Elliott, and Anders Søgaard. 2019. Adversarial Removal of Demographic Attributes Revisited. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6330–6335, Hong Kong, China. Association for Computational Linguistics.