@inproceedings{popat-etal-2019-stancy,
title = "{STANCY}: Stance Classification Based on Consistency Cues",
author = "Popat, Kashyap and
Mukherjee, Subhabrata and
Yates, Andrew and
Weikum, Gerhard",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1675/",
doi = "10.18653/v1/D19-1675",
pages = "6413--6418",
abstract = "Controversial claims are abundant in online media and discussion forums. A better understanding of such claims requires analyzing them from different perspectives. Stance classification is a necessary step for inferring these perspectives in terms of supporting or opposing the claim. In this work, we present a neural network model for stance classification leveraging BERT representations and augmenting them with a novel consistency constraint. Experiments on the Perspectrum dataset, consisting of claims and users' perspectives from various debate websites, demonstrate the effectiveness of our approach over state-of-the-art baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="popat-etal-2019-stancy">
<titleInfo>
<title>STANCY: Stance Classification Based on Consistency Cues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kashyap</namePart>
<namePart type="family">Popat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Subhabrata</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Yates</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerhard</namePart>
<namePart type="family">Weikum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Controversial claims are abundant in online media and discussion forums. A better understanding of such claims requires analyzing them from different perspectives. Stance classification is a necessary step for inferring these perspectives in terms of supporting or opposing the claim. In this work, we present a neural network model for stance classification leveraging BERT representations and augmenting them with a novel consistency constraint. Experiments on the Perspectrum dataset, consisting of claims and users’ perspectives from various debate websites, demonstrate the effectiveness of our approach over state-of-the-art baselines.</abstract>
<identifier type="citekey">popat-etal-2019-stancy</identifier>
<identifier type="doi">10.18653/v1/D19-1675</identifier>
<location>
<url>https://aclanthology.org/D19-1675/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>6413</start>
<end>6418</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T STANCY: Stance Classification Based on Consistency Cues
%A Popat, Kashyap
%A Mukherjee, Subhabrata
%A Yates, Andrew
%A Weikum, Gerhard
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F popat-etal-2019-stancy
%X Controversial claims are abundant in online media and discussion forums. A better understanding of such claims requires analyzing them from different perspectives. Stance classification is a necessary step for inferring these perspectives in terms of supporting or opposing the claim. In this work, we present a neural network model for stance classification leveraging BERT representations and augmenting them with a novel consistency constraint. Experiments on the Perspectrum dataset, consisting of claims and users’ perspectives from various debate websites, demonstrate the effectiveness of our approach over state-of-the-art baselines.
%R 10.18653/v1/D19-1675
%U https://aclanthology.org/D19-1675/
%U https://doi.org/10.18653/v1/D19-1675
%P 6413-6418
Markdown (Informal)
[STANCY: Stance Classification Based on Consistency Cues](https://aclanthology.org/D19-1675/) (Popat et al., EMNLP-IJCNLP 2019)
ACL
- Kashyap Popat, Subhabrata Mukherjee, Andrew Yates, and Gerhard Weikum. 2019. STANCY: Stance Classification Based on Consistency Cues. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6413–6418, Hong Kong, China. Association for Computational Linguistics.