@inproceedings{park-etal-2019-softregex,
title = "{S}oft{R}egex: Generating Regex from Natural Language Descriptions using Softened Regex Equivalence",
author = "Park, Jun-U and
Ko, Sang-Ki and
Cognetta, Marco and
Han, Yo-Sub",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1677/",
doi = "10.18653/v1/D19-1677",
pages = "6425--6431",
abstract = "We continue the study of generating se-mantically correct regular expressions from natural language descriptions (NL). The current state-of-the-art model SemRegex produces regular expressions from NLs by rewarding the reinforced learning based on the semantic (rather than syntactic) equivalence between two regular expressions. Since the regular expression equivalence problem is PSPACE-complete, we introduce the EQ{\_}Reg model for computing the simi-larity of two regular expressions using deep neural networks. Our EQ{\_}Reg mod-el essentially softens the equivalence of two regular expressions when used as a reward function. We then propose a new regex generation model, SoftRegex, us-ing the EQ{\_}Reg model, and empirically demonstrate that SoftRegex substantially reduces the training time (by a factor of at least 3.6) and produces state-of-the-art results on three benchmark datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="park-etal-2019-softregex">
<titleInfo>
<title>SoftRegex: Generating Regex from Natural Language Descriptions using Softened Regex Equivalence</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jun-U</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sang-Ki</namePart>
<namePart type="family">Ko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Cognetta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yo-Sub</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We continue the study of generating se-mantically correct regular expressions from natural language descriptions (NL). The current state-of-the-art model SemRegex produces regular expressions from NLs by rewarding the reinforced learning based on the semantic (rather than syntactic) equivalence between two regular expressions. Since the regular expression equivalence problem is PSPACE-complete, we introduce the EQ_Reg model for computing the simi-larity of two regular expressions using deep neural networks. Our EQ_Reg mod-el essentially softens the equivalence of two regular expressions when used as a reward function. We then propose a new regex generation model, SoftRegex, us-ing the EQ_Reg model, and empirically demonstrate that SoftRegex substantially reduces the training time (by a factor of at least 3.6) and produces state-of-the-art results on three benchmark datasets.</abstract>
<identifier type="citekey">park-etal-2019-softregex</identifier>
<identifier type="doi">10.18653/v1/D19-1677</identifier>
<location>
<url>https://aclanthology.org/D19-1677/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>6425</start>
<end>6431</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SoftRegex: Generating Regex from Natural Language Descriptions using Softened Regex Equivalence
%A Park, Jun-U
%A Ko, Sang-Ki
%A Cognetta, Marco
%A Han, Yo-Sub
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F park-etal-2019-softregex
%X We continue the study of generating se-mantically correct regular expressions from natural language descriptions (NL). The current state-of-the-art model SemRegex produces regular expressions from NLs by rewarding the reinforced learning based on the semantic (rather than syntactic) equivalence between two regular expressions. Since the regular expression equivalence problem is PSPACE-complete, we introduce the EQ_Reg model for computing the simi-larity of two regular expressions using deep neural networks. Our EQ_Reg mod-el essentially softens the equivalence of two regular expressions when used as a reward function. We then propose a new regex generation model, SoftRegex, us-ing the EQ_Reg model, and empirically demonstrate that SoftRegex substantially reduces the training time (by a factor of at least 3.6) and produces state-of-the-art results on three benchmark datasets.
%R 10.18653/v1/D19-1677
%U https://aclanthology.org/D19-1677/
%U https://doi.org/10.18653/v1/D19-1677
%P 6425-6431
Markdown (Informal)
[SoftRegex: Generating Regex from Natural Language Descriptions using Softened Regex Equivalence](https://aclanthology.org/D19-1677/) (Park et al., EMNLP-IJCNLP 2019)
ACL