@inproceedings{chen-etal-2019-incorporating,
title = "Incorporating Fine-grained Events in Stock Movement Prediction",
author = "Chen, Deli and
Zou, Yanyan and
Harimoto, Keiko and
Bao, Ruihan and
Ren, Xuancheng and
Sun, Xu",
editor = "Hahn, Udo and
Hoste, V{\'e}ronique and
Zhang, Zhu",
booktitle = "Proceedings of the Second Workshop on Economics and Natural Language Processing",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5105",
doi = "10.18653/v1/D19-5105",
pages = "31--40",
abstract = "Considering event structure information has proven helpful in text-based stock movement prediction. However, existing works mainly adopt the coarse-grained events, which loses the specific semantic information of diverse event types. In this work, we propose to incorporate the fine-grained events in stock movement prediction. Firstly, we propose a professional finance event dictionary built by domain experts and use it to extract fine-grained events automatically from finance news. Then we design a neural model to combine finance news with fine-grained event structure and stock trade data to predict the stock movement. Besides, in order to improve the generalizability of the proposed method, we design an advanced model that uses the extracted fine-grained events as the distant supervised label to train a multi-task framework of event extraction and stock prediction. The experimental results show that our method outperforms all the baselines and has good generalizability.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2019-incorporating">
<titleInfo>
<title>Incorporating Fine-grained Events in Stock Movement Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deli</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanyan</namePart>
<namePart type="family">Zou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keiko</namePart>
<namePart type="family">Harimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihan</namePart>
<namePart type="family">Bao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuancheng</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Economics and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Udo</namePart>
<namePart type="family">Hahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Véronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Considering event structure information has proven helpful in text-based stock movement prediction. However, existing works mainly adopt the coarse-grained events, which loses the specific semantic information of diverse event types. In this work, we propose to incorporate the fine-grained events in stock movement prediction. Firstly, we propose a professional finance event dictionary built by domain experts and use it to extract fine-grained events automatically from finance news. Then we design a neural model to combine finance news with fine-grained event structure and stock trade data to predict the stock movement. Besides, in order to improve the generalizability of the proposed method, we design an advanced model that uses the extracted fine-grained events as the distant supervised label to train a multi-task framework of event extraction and stock prediction. The experimental results show that our method outperforms all the baselines and has good generalizability.</abstract>
<identifier type="citekey">chen-etal-2019-incorporating</identifier>
<identifier type="doi">10.18653/v1/D19-5105</identifier>
<location>
<url>https://aclanthology.org/D19-5105</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>31</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incorporating Fine-grained Events in Stock Movement Prediction
%A Chen, Deli
%A Zou, Yanyan
%A Harimoto, Keiko
%A Bao, Ruihan
%A Ren, Xuancheng
%A Sun, Xu
%Y Hahn, Udo
%Y Hoste, Véronique
%Y Zhang, Zhu
%S Proceedings of the Second Workshop on Economics and Natural Language Processing
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F chen-etal-2019-incorporating
%X Considering event structure information has proven helpful in text-based stock movement prediction. However, existing works mainly adopt the coarse-grained events, which loses the specific semantic information of diverse event types. In this work, we propose to incorporate the fine-grained events in stock movement prediction. Firstly, we propose a professional finance event dictionary built by domain experts and use it to extract fine-grained events automatically from finance news. Then we design a neural model to combine finance news with fine-grained event structure and stock trade data to predict the stock movement. Besides, in order to improve the generalizability of the proposed method, we design an advanced model that uses the extracted fine-grained events as the distant supervised label to train a multi-task framework of event extraction and stock prediction. The experimental results show that our method outperforms all the baselines and has good generalizability.
%R 10.18653/v1/D19-5105
%U https://aclanthology.org/D19-5105
%U https://doi.org/10.18653/v1/D19-5105
%P 31-40
Markdown (Informal)
[Incorporating Fine-grained Events in Stock Movement Prediction](https://aclanthology.org/D19-5105) (Chen et al., 2019)
ACL