@inproceedings{khalife-vazirgiannis-2019-scalable,
title = "Scalable graph-based method for individual named entity identification",
author = "Khalife, Sammy and
Vazirgiannis, Michalis",
editor = "Ustalov, Dmitry and
Somasundaran, Swapna and
Jansen, Peter and
Glava{\v{s}}, Goran and
Riedl, Martin and
Surdeanu, Mihai and
Vazirgiannis, Michalis",
booktitle = "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5303",
doi = "10.18653/v1/D19-5303",
pages = "17--25",
abstract = "In this paper, we consider the named entity linking (NEL) problem. We assume a set of queries, named entities, that have to be identified within a knowledge base. This knowledge base is represented by a text database paired with a semantic graph, endowed with a classification of entities (ontology). We present state-of-the-art methods in NEL, and propose a new method for individual identification requiring few annotated data samples. We demonstrate its scalability and performance over standard datasets, for several ontology configurations. Our approach is well-motivated for integration in real systems. Indeed, recent deep learning methods, despite their capacity to improve experimental precision, require lots of parameter tuning along with large volume of annotated data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khalife-vazirgiannis-2019-scalable">
<titleInfo>
<title>Scalable graph-based method for individual named entity identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sammy</namePart>
<namePart type="family">Khalife</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalis</namePart>
<namePart type="family">Vazirgiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Ustalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Riedl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalis</namePart>
<namePart type="family">Vazirgiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we consider the named entity linking (NEL) problem. We assume a set of queries, named entities, that have to be identified within a knowledge base. This knowledge base is represented by a text database paired with a semantic graph, endowed with a classification of entities (ontology). We present state-of-the-art methods in NEL, and propose a new method for individual identification requiring few annotated data samples. We demonstrate its scalability and performance over standard datasets, for several ontology configurations. Our approach is well-motivated for integration in real systems. Indeed, recent deep learning methods, despite their capacity to improve experimental precision, require lots of parameter tuning along with large volume of annotated data.</abstract>
<identifier type="citekey">khalife-vazirgiannis-2019-scalable</identifier>
<identifier type="doi">10.18653/v1/D19-5303</identifier>
<location>
<url>https://aclanthology.org/D19-5303</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>17</start>
<end>25</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Scalable graph-based method for individual named entity identification
%A Khalife, Sammy
%A Vazirgiannis, Michalis
%Y Ustalov, Dmitry
%Y Somasundaran, Swapna
%Y Jansen, Peter
%Y Glavaš, Goran
%Y Riedl, Martin
%Y Surdeanu, Mihai
%Y Vazirgiannis, Michalis
%S Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F khalife-vazirgiannis-2019-scalable
%X In this paper, we consider the named entity linking (NEL) problem. We assume a set of queries, named entities, that have to be identified within a knowledge base. This knowledge base is represented by a text database paired with a semantic graph, endowed with a classification of entities (ontology). We present state-of-the-art methods in NEL, and propose a new method for individual identification requiring few annotated data samples. We demonstrate its scalability and performance over standard datasets, for several ontology configurations. Our approach is well-motivated for integration in real systems. Indeed, recent deep learning methods, despite their capacity to improve experimental precision, require lots of parameter tuning along with large volume of annotated data.
%R 10.18653/v1/D19-5303
%U https://aclanthology.org/D19-5303
%U https://doi.org/10.18653/v1/D19-5303
%P 17-25
Markdown (Informal)
[Scalable graph-based method for individual named entity identification](https://aclanthology.org/D19-5303) (Khalife & Vazirgiannis, TextGraphs 2019)
ACL