@inproceedings{zuckerman-last-2019-using,
title = "Using Graphs for Word Embedding with Enhanced Semantic Relations",
author = "Zuckerman, Matan and
Last, Mark",
editor = "Ustalov, Dmitry and
Somasundaran, Swapna and
Jansen, Peter and
Glava{\v{s}}, Goran and
Riedl, Martin and
Surdeanu, Mihai and
Vazirgiannis, Michalis",
booktitle = "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5305/",
doi = "10.18653/v1/D19-5305",
pages = "32--41",
abstract = "Word embedding algorithms have become a common tool in the field of natural language processing. While some, like Word2Vec, are based on sequential text input, others are utilizing a graph representation of text. In this paper, we introduce a new algorithm, named WordGraph2Vec, or in short WG2V, which combines the two approaches to gain the benefits of both. The algorithm uses a directed word graph to provide additional information for sequential text input algorithms. Our experiments on benchmark datasets show that text classification algorithms are nearly as accurate with WG2V as with other word embedding models while preserving more stable accuracy rankings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zuckerman-last-2019-using">
<titleInfo>
<title>Using Graphs for Word Embedding with Enhanced Semantic Relations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matan</namePart>
<namePart type="family">Zuckerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Last</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Ustalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Riedl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalis</namePart>
<namePart type="family">Vazirgiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embedding algorithms have become a common tool in the field of natural language processing. While some, like Word2Vec, are based on sequential text input, others are utilizing a graph representation of text. In this paper, we introduce a new algorithm, named WordGraph2Vec, or in short WG2V, which combines the two approaches to gain the benefits of both. The algorithm uses a directed word graph to provide additional information for sequential text input algorithms. Our experiments on benchmark datasets show that text classification algorithms are nearly as accurate with WG2V as with other word embedding models while preserving more stable accuracy rankings.</abstract>
<identifier type="citekey">zuckerman-last-2019-using</identifier>
<identifier type="doi">10.18653/v1/D19-5305</identifier>
<location>
<url>https://aclanthology.org/D19-5305/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>32</start>
<end>41</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Graphs for Word Embedding with Enhanced Semantic Relations
%A Zuckerman, Matan
%A Last, Mark
%Y Ustalov, Dmitry
%Y Somasundaran, Swapna
%Y Jansen, Peter
%Y Glavaš, Goran
%Y Riedl, Martin
%Y Surdeanu, Mihai
%Y Vazirgiannis, Michalis
%S Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F zuckerman-last-2019-using
%X Word embedding algorithms have become a common tool in the field of natural language processing. While some, like Word2Vec, are based on sequential text input, others are utilizing a graph representation of text. In this paper, we introduce a new algorithm, named WordGraph2Vec, or in short WG2V, which combines the two approaches to gain the benefits of both. The algorithm uses a directed word graph to provide additional information for sequential text input algorithms. Our experiments on benchmark datasets show that text classification algorithms are nearly as accurate with WG2V as with other word embedding models while preserving more stable accuracy rankings.
%R 10.18653/v1/D19-5305
%U https://aclanthology.org/D19-5305/
%U https://doi.org/10.18653/v1/D19-5305
%P 32-41
Markdown (Informal)
[Using Graphs for Word Embedding with Enhanced Semantic Relations](https://aclanthology.org/D19-5305/) (Zuckerman & Last, TextGraphs 2019)
ACL