@inproceedings{pal-etal-2019-answering,
title = "Answering Naturally: Factoid to Full length Answer Generation",
author = "Pal, Vaishali and
Shrivastava, Manish and
Bhat, Irshad",
editor = "Wang, Lu and
Cheung, Jackie Chi Kit and
Carenini, Giuseppe and
Liu, Fei",
booktitle = "Proceedings of the 2nd Workshop on New Frontiers in Summarization",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5401/",
doi = "10.18653/v1/D19-5401",
pages = "1--9",
abstract = "In recent years, the task of Question Answering over passages, also pitched as a reading comprehension, has evolved into a very active research area. A reading comprehension system extracts a span of text, comprising of named entities, dates, small phrases, etc., which serve as the answer to a given question. However, these spans of text would result in an unnatural reading experience in a conversational system. Usually, dialogue systems solve this issue by using template-based language generation. These systems, though adequate for a domain specific task, are too restrictive and predefined for a domain independent system. In order to present the user with a more conversational experience, we propose a pointer generator based full-length answer generator which can be used with most QA systems. Our system generates a full length answer given a question and the extracted factoid/span answer without relying on the passage from where the answer was extracted. We also present a dataset of 315000 question, factoid answer and full length answer triples. We have evaluated our system using ROUGE-1,2,L and BLEU and achieved 74.05 BLEU score and 86.25 Rogue-L score."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pal-etal-2019-answering">
<titleInfo>
<title>Answering Naturally: Factoid to Full length Answer Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vaishali</namePart>
<namePart type="family">Pal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manish</namePart>
<namePart type="family">Shrivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Irshad</namePart>
<namePart type="family">Bhat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on New Frontiers in Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">Chi</namePart>
<namePart type="given">Kit</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years, the task of Question Answering over passages, also pitched as a reading comprehension, has evolved into a very active research area. A reading comprehension system extracts a span of text, comprising of named entities, dates, small phrases, etc., which serve as the answer to a given question. However, these spans of text would result in an unnatural reading experience in a conversational system. Usually, dialogue systems solve this issue by using template-based language generation. These systems, though adequate for a domain specific task, are too restrictive and predefined for a domain independent system. In order to present the user with a more conversational experience, we propose a pointer generator based full-length answer generator which can be used with most QA systems. Our system generates a full length answer given a question and the extracted factoid/span answer without relying on the passage from where the answer was extracted. We also present a dataset of 315000 question, factoid answer and full length answer triples. We have evaluated our system using ROUGE-1,2,L and BLEU and achieved 74.05 BLEU score and 86.25 Rogue-L score.</abstract>
<identifier type="citekey">pal-etal-2019-answering</identifier>
<identifier type="doi">10.18653/v1/D19-5401</identifier>
<location>
<url>https://aclanthology.org/D19-5401/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>1</start>
<end>9</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Answering Naturally: Factoid to Full length Answer Generation
%A Pal, Vaishali
%A Shrivastava, Manish
%A Bhat, Irshad
%Y Wang, Lu
%Y Cheung, Jackie Chi Kit
%Y Carenini, Giuseppe
%Y Liu, Fei
%S Proceedings of the 2nd Workshop on New Frontiers in Summarization
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F pal-etal-2019-answering
%X In recent years, the task of Question Answering over passages, also pitched as a reading comprehension, has evolved into a very active research area. A reading comprehension system extracts a span of text, comprising of named entities, dates, small phrases, etc., which serve as the answer to a given question. However, these spans of text would result in an unnatural reading experience in a conversational system. Usually, dialogue systems solve this issue by using template-based language generation. These systems, though adequate for a domain specific task, are too restrictive and predefined for a domain independent system. In order to present the user with a more conversational experience, we propose a pointer generator based full-length answer generator which can be used with most QA systems. Our system generates a full length answer given a question and the extracted factoid/span answer without relying on the passage from where the answer was extracted. We also present a dataset of 315000 question, factoid answer and full length answer triples. We have evaluated our system using ROUGE-1,2,L and BLEU and achieved 74.05 BLEU score and 86.25 Rogue-L score.
%R 10.18653/v1/D19-5401
%U https://aclanthology.org/D19-5401/
%U https://doi.org/10.18653/v1/D19-5401
%P 1-9
Markdown (Informal)
[Answering Naturally: Factoid to Full length Answer Generation](https://aclanthology.org/D19-5401/) (Pal et al., 2019)
ACL