@inproceedings{van-der-goot-2019-depth,
title = "An In-depth Analysis of the Effect of Lexical Normalization on the Dependency Parsing of Social Media",
author = "van der Goot, Rob",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5515",
doi = "10.18653/v1/D19-5515",
pages = "115--120",
abstract = "Existing natural language processing systems have often been designed with standard texts in mind. However, when these tools are used on the substantially different texts from social media, their performance drops dramatically. One solution is to translate social media data to standard language before processing, this is also called normalization. It is well-known that this improves performance for many natural language processing tasks on social media data. However, little is known about which types of normalization replacements have the most effect. Furthermore, it is unknown what the weaknesses of existing lexical normalization systems are in an extrinsic setting. In this paper, we analyze the effect of manual as well as automatic lexical normalization for dependency parsing. After our analysis, we conclude that for most categories, automatic normalization scores close to manually annotated normalization and that small annotation differences are important to take into consideration when exploiting normalization in a pipeline setup.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-der-goot-2019-depth">
<titleInfo>
<title>An In-depth Analysis of the Effect of Lexical Normalization on the Dependency Parsing of Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing natural language processing systems have often been designed with standard texts in mind. However, when these tools are used on the substantially different texts from social media, their performance drops dramatically. One solution is to translate social media data to standard language before processing, this is also called normalization. It is well-known that this improves performance for many natural language processing tasks on social media data. However, little is known about which types of normalization replacements have the most effect. Furthermore, it is unknown what the weaknesses of existing lexical normalization systems are in an extrinsic setting. In this paper, we analyze the effect of manual as well as automatic lexical normalization for dependency parsing. After our analysis, we conclude that for most categories, automatic normalization scores close to manually annotated normalization and that small annotation differences are important to take into consideration when exploiting normalization in a pipeline setup.</abstract>
<identifier type="citekey">van-der-goot-2019-depth</identifier>
<identifier type="doi">10.18653/v1/D19-5515</identifier>
<location>
<url>https://aclanthology.org/D19-5515</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>115</start>
<end>120</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An In-depth Analysis of the Effect of Lexical Normalization on the Dependency Parsing of Social Media
%A van der Goot, Rob
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F van-der-goot-2019-depth
%X Existing natural language processing systems have often been designed with standard texts in mind. However, when these tools are used on the substantially different texts from social media, their performance drops dramatically. One solution is to translate social media data to standard language before processing, this is also called normalization. It is well-known that this improves performance for many natural language processing tasks on social media data. However, little is known about which types of normalization replacements have the most effect. Furthermore, it is unknown what the weaknesses of existing lexical normalization systems are in an extrinsic setting. In this paper, we analyze the effect of manual as well as automatic lexical normalization for dependency parsing. After our analysis, we conclude that for most categories, automatic normalization scores close to manually annotated normalization and that small annotation differences are important to take into consideration when exploiting normalization in a pipeline setup.
%R 10.18653/v1/D19-5515
%U https://aclanthology.org/D19-5515
%U https://doi.org/10.18653/v1/D19-5515
%P 115-120
Markdown (Informal)
[An In-depth Analysis of the Effect of Lexical Normalization on the Dependency Parsing of Social Media](https://aclanthology.org/D19-5515) (van der Goot, WNUT 2019)
ACL