@inproceedings{pal-sharma-2019-towards,
title = "Towards Automated Semantic Role Labelling of {H}indi-{E}nglish Code-Mixed Tweets",
author = "Pal, Riya and
Sharma, Dipti",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5538/",
doi = "10.18653/v1/D19-5538",
pages = "291--296",
abstract = "We present a system for automating Semantic Role Labelling of Hindi-English code-mixed tweets. We explore the issues posed by noisy, user generated code-mixed social media data. We also compare the individual effect of various linguistic features used in our system. Our proposed model is a 2-step system for automated labelling which gives an overall accuracy of 84{\%} for Argument Classification, marking a 10{\%} increase over the existing rule-based baseline model. This is the first attempt at building a statistical Semantic Role Labeller for Hindi-English code-mixed data, to the best of our knowledge."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pal-sharma-2019-towards">
<titleInfo>
<title>Towards Automated Semantic Role Labelling of Hindi-English Code-Mixed Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Riya</namePart>
<namePart type="family">Pal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipti</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a system for automating Semantic Role Labelling of Hindi-English code-mixed tweets. We explore the issues posed by noisy, user generated code-mixed social media data. We also compare the individual effect of various linguistic features used in our system. Our proposed model is a 2-step system for automated labelling which gives an overall accuracy of 84% for Argument Classification, marking a 10% increase over the existing rule-based baseline model. This is the first attempt at building a statistical Semantic Role Labeller for Hindi-English code-mixed data, to the best of our knowledge.</abstract>
<identifier type="citekey">pal-sharma-2019-towards</identifier>
<identifier type="doi">10.18653/v1/D19-5538</identifier>
<location>
<url>https://aclanthology.org/D19-5538/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>291</start>
<end>296</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Automated Semantic Role Labelling of Hindi-English Code-Mixed Tweets
%A Pal, Riya
%A Sharma, Dipti
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F pal-sharma-2019-towards
%X We present a system for automating Semantic Role Labelling of Hindi-English code-mixed tweets. We explore the issues posed by noisy, user generated code-mixed social media data. We also compare the individual effect of various linguistic features used in our system. Our proposed model is a 2-step system for automated labelling which gives an overall accuracy of 84% for Argument Classification, marking a 10% increase over the existing rule-based baseline model. This is the first attempt at building a statistical Semantic Role Labeller for Hindi-English code-mixed data, to the best of our knowledge.
%R 10.18653/v1/D19-5538
%U https://aclanthology.org/D19-5538/
%U https://doi.org/10.18653/v1/D19-5538
%P 291-296
Markdown (Informal)
[Towards Automated Semantic Role Labelling of Hindi-English Code-Mixed Tweets](https://aclanthology.org/D19-5538/) (Pal & Sharma, WNUT 2019)
ACL