@inproceedings{sekulic-strube-2019-adapting,
title = "Adapting Deep Learning Methods for Mental Health Prediction on Social Media",
author = "Sekulic, Ivan and
Strube, Michael",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5542",
doi = "10.18653/v1/D19-5542",
pages = "322--327",
abstract = "Mental health poses a significant challenge for an individual{'}s well-being. Text analysis of rich resources, like social media, can contribute to deeper understanding of illnesses and provide means for their early detection. We tackle a challenge of detecting social media users{'} mental status through deep learning-based models, moving away from traditional approaches to the task. In a binary classification task on predicting if a user suffers from one of nine different disorders, a hierarchical attention network outperforms previously set benchmarks for four of the disorders. Furthermore, we explore the limitations of our model and analyze phrases relevant for classification by inspecting the model{'}s word-level attention weights.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sekulic-strube-2019-adapting">
<titleInfo>
<title>Adapting Deep Learning Methods for Mental Health Prediction on Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Sekulic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Strube</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Mental health poses a significant challenge for an individual’s well-being. Text analysis of rich resources, like social media, can contribute to deeper understanding of illnesses and provide means for their early detection. We tackle a challenge of detecting social media users’ mental status through deep learning-based models, moving away from traditional approaches to the task. In a binary classification task on predicting if a user suffers from one of nine different disorders, a hierarchical attention network outperforms previously set benchmarks for four of the disorders. Furthermore, we explore the limitations of our model and analyze phrases relevant for classification by inspecting the model’s word-level attention weights.</abstract>
<identifier type="citekey">sekulic-strube-2019-adapting</identifier>
<identifier type="doi">10.18653/v1/D19-5542</identifier>
<location>
<url>https://aclanthology.org/D19-5542</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>322</start>
<end>327</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adapting Deep Learning Methods for Mental Health Prediction on Social Media
%A Sekulic, Ivan
%A Strube, Michael
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F sekulic-strube-2019-adapting
%X Mental health poses a significant challenge for an individual’s well-being. Text analysis of rich resources, like social media, can contribute to deeper understanding of illnesses and provide means for their early detection. We tackle a challenge of detecting social media users’ mental status through deep learning-based models, moving away from traditional approaches to the task. In a binary classification task on predicting if a user suffers from one of nine different disorders, a hierarchical attention network outperforms previously set benchmarks for four of the disorders. Furthermore, we explore the limitations of our model and analyze phrases relevant for classification by inspecting the model’s word-level attention weights.
%R 10.18653/v1/D19-5542
%U https://aclanthology.org/D19-5542
%U https://doi.org/10.18653/v1/D19-5542
%P 322-327
Markdown (Informal)
[Adapting Deep Learning Methods for Mental Health Prediction on Social Media](https://aclanthology.org/D19-5542) (Sekulic & Strube, WNUT 2019)
ACL