@inproceedings{liu-etal-2019-deepgenemd,
title = "{D}eep{G}ene{MD}: A Joint Deep Learning Model for Extracting Gene Mutation-Disease Knowledge from {P}ub{M}ed Literature",
author = "Liu, Feifan and
Zheng, Xiaoyu and
Wang, Bo and
Kiefe, Catarina",
editor = "Jin-Dong, Kim and
Claire, N{\'e}dellec and
Robert, Bossy and
Louise, Del{\'e}ger",
booktitle = "Proceedings of the 5th Workshop on BioNLP Open Shared Tasks",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5712",
doi = "10.18653/v1/D19-5712",
pages = "77--83",
abstract = "Understanding the pathogenesis of genetic diseases through different gene activities and their relations to relevant diseases is important for new drug discovery and drug repositioning. In this paper, we present a joint deep learning model in a multi-task learning paradigm for gene mutation-disease knowledge extraction, DeepGeneMD, which adapts the state-of-the-art hierarchical multi-task learning framework for joint inference on named entity recognition (NER) and relation extraction (RE) in the context of the AGAC (Active Gene Annotation Corpus) track at 2019 BioNLP Open Shared Tasks (BioNLP-OST). It simultaneously extracts gene mutation related activities, diseases, and their relations from the published scientific literature. In DeepGeneMD, we explore the task decomposition to create auxiliary subtasks so that more interactions between different learning subtasks can be leveraged in model training. Our model achieves the average F1 score of 0.45 on recognizing gene activities and disease entities, ranking 2nd in the AGAC NER task; and the average F1 score of 0.35 on extracting relations, ranking 1st in the AGAC RE task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2019-deepgenemd">
<titleInfo>
<title>DeepGeneMD: A Joint Deep Learning Model for Extracting Gene Mutation-Disease Knowledge from PubMed Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Feifan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoyu</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catarina</namePart>
<namePart type="family">Kiefe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on BioNLP Open Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kim</namePart>
<namePart type="family">Jin-Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nédellec</namePart>
<namePart type="family">Claire</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bossy</namePart>
<namePart type="family">Robert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deléger</namePart>
<namePart type="family">Louise</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding the pathogenesis of genetic diseases through different gene activities and their relations to relevant diseases is important for new drug discovery and drug repositioning. In this paper, we present a joint deep learning model in a multi-task learning paradigm for gene mutation-disease knowledge extraction, DeepGeneMD, which adapts the state-of-the-art hierarchical multi-task learning framework for joint inference on named entity recognition (NER) and relation extraction (RE) in the context of the AGAC (Active Gene Annotation Corpus) track at 2019 BioNLP Open Shared Tasks (BioNLP-OST). It simultaneously extracts gene mutation related activities, diseases, and their relations from the published scientific literature. In DeepGeneMD, we explore the task decomposition to create auxiliary subtasks so that more interactions between different learning subtasks can be leveraged in model training. Our model achieves the average F1 score of 0.45 on recognizing gene activities and disease entities, ranking 2nd in the AGAC NER task; and the average F1 score of 0.35 on extracting relations, ranking 1st in the AGAC RE task.</abstract>
<identifier type="citekey">liu-etal-2019-deepgenemd</identifier>
<identifier type="doi">10.18653/v1/D19-5712</identifier>
<location>
<url>https://aclanthology.org/D19-5712</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>77</start>
<end>83</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DeepGeneMD: A Joint Deep Learning Model for Extracting Gene Mutation-Disease Knowledge from PubMed Literature
%A Liu, Feifan
%A Zheng, Xiaoyu
%A Wang, Bo
%A Kiefe, Catarina
%Y Jin-Dong, Kim
%Y Claire, Nédellec
%Y Robert, Bossy
%Y Louise, Deléger
%S Proceedings of the 5th Workshop on BioNLP Open Shared Tasks
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F liu-etal-2019-deepgenemd
%X Understanding the pathogenesis of genetic diseases through different gene activities and their relations to relevant diseases is important for new drug discovery and drug repositioning. In this paper, we present a joint deep learning model in a multi-task learning paradigm for gene mutation-disease knowledge extraction, DeepGeneMD, which adapts the state-of-the-art hierarchical multi-task learning framework for joint inference on named entity recognition (NER) and relation extraction (RE) in the context of the AGAC (Active Gene Annotation Corpus) track at 2019 BioNLP Open Shared Tasks (BioNLP-OST). It simultaneously extracts gene mutation related activities, diseases, and their relations from the published scientific literature. In DeepGeneMD, we explore the task decomposition to create auxiliary subtasks so that more interactions between different learning subtasks can be leveraged in model training. Our model achieves the average F1 score of 0.45 on recognizing gene activities and disease entities, ranking 2nd in the AGAC NER task; and the average F1 score of 0.35 on extracting relations, ranking 1st in the AGAC RE task.
%R 10.18653/v1/D19-5712
%U https://aclanthology.org/D19-5712
%U https://doi.org/10.18653/v1/D19-5712
%P 77-83
Markdown (Informal)
[DeepGeneMD: A Joint Deep Learning Model for Extracting Gene Mutation-Disease Knowledge from PubMed Literature](https://aclanthology.org/D19-5712) (Liu et al., BioNLP 2019)
ACL