@inproceedings{mao-liu-2019-integration,
    title = "Integration of Deep Learning and Traditional Machine Learning for Knowledge Extraction from Biomedical Literature",
    author = "Mao, Jihang  and
      Liu, Wanli",
    editor = "Jin-Dong, Kim  and
      Claire, N{\'e}dellec  and
      Robert, Bossy  and
      Louise, Del{\'e}ger",
    booktitle = "Proceedings of the 5th Workshop on BioNLP Open Shared Tasks",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5724/",
    doi = "10.18653/v1/D19-5724",
    pages = "168--173",
    abstract = "In this paper, we present our participation in the Bacteria Biotope (BB) task at BioNLP-OST 2019. Our system utilizes fine-tuned language representation models and machine learning approaches based on word embedding and lexical features for entities recognition, normalization and relation extraction. It achieves the state-of-the-art performance and is among the top two systems in five of all six subtasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mao-liu-2019-integration">
    <titleInfo>
        <title>Integration of Deep Learning and Traditional Machine Learning for Knowledge Extraction from Biomedical Literature</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Jihang</namePart>
        <namePart type="family">Mao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Wanli</namePart>
        <namePart type="family">Liu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 5th Workshop on BioNLP Open Shared Tasks</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Kim</namePart>
            <namePart type="family">Jin-Dong</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nédellec</namePart>
            <namePart type="family">Claire</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Bossy</namePart>
            <namePart type="family">Robert</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Deléger</namePart>
            <namePart type="family">Louise</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we present our participation in the Bacteria Biotope (BB) task at BioNLP-OST 2019. Our system utilizes fine-tuned language representation models and machine learning approaches based on word embedding and lexical features for entities recognition, normalization and relation extraction. It achieves the state-of-the-art performance and is among the top two systems in five of all six subtasks.</abstract>
    <identifier type="citekey">mao-liu-2019-integration</identifier>
    <identifier type="doi">10.18653/v1/D19-5724</identifier>
    <location>
        <url>https://aclanthology.org/D19-5724/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>168</start>
            <end>173</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integration of Deep Learning and Traditional Machine Learning for Knowledge Extraction from Biomedical Literature
%A Mao, Jihang
%A Liu, Wanli
%Y Jin-Dong, Kim
%Y Claire, Nédellec
%Y Robert, Bossy
%Y Louise, Deléger
%S Proceedings of the 5th Workshop on BioNLP Open Shared Tasks
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F mao-liu-2019-integration
%X In this paper, we present our participation in the Bacteria Biotope (BB) task at BioNLP-OST 2019. Our system utilizes fine-tuned language representation models and machine learning approaches based on word embedding and lexical features for entities recognition, normalization and relation extraction. It achieves the state-of-the-art performance and is among the top two systems in five of all six subtasks.
%R 10.18653/v1/D19-5724
%U https://aclanthology.org/D19-5724/
%U https://doi.org/10.18653/v1/D19-5724
%P 168-173
Markdown (Informal)
[Integration of Deep Learning and Traditional Machine Learning for Knowledge Extraction from Biomedical Literature](https://aclanthology.org/D19-5724/) (Mao & Liu, BioNLP 2019)
ACL