@inproceedings{yeh-chen-2019-flowdelta,
title = "{F}low{D}elta: Modeling Flow Information Gain in Reasoning for Conversational Machine Comprehension",
author = "Yeh, Yi-Ting and
Chen, Yun-Nung",
editor = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5812/",
doi = "10.18653/v1/D19-5812",
pages = "86--90",
abstract = "Conversational machine comprehension requires deep understanding of the dialogue flow, and the prior work proposed FlowQA to implicitly model the context representations in reasoning for better understanding. This paper proposes to explicitly model the information gain through the dialogue reasoning in order to allow the model to focus on more informative cues. The proposed model achieves the state-of-the-art performance in a conversational QA dataset QuAC and sequential instruction understanding dataset SCONE, which shows the effectiveness of the proposed mechanism and demonstrate its capability of generalization to different QA models and tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yeh-chen-2019-flowdelta">
<titleInfo>
<title>FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi-Ting</namePart>
<namePart type="family">Yeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Machine Reading for Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Fisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alon</namePart>
<namePart type="family">Talmor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robin</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minjoon</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eunsol</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danqi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversational machine comprehension requires deep understanding of the dialogue flow, and the prior work proposed FlowQA to implicitly model the context representations in reasoning for better understanding. This paper proposes to explicitly model the information gain through the dialogue reasoning in order to allow the model to focus on more informative cues. The proposed model achieves the state-of-the-art performance in a conversational QA dataset QuAC and sequential instruction understanding dataset SCONE, which shows the effectiveness of the proposed mechanism and demonstrate its capability of generalization to different QA models and tasks.</abstract>
<identifier type="citekey">yeh-chen-2019-flowdelta</identifier>
<identifier type="doi">10.18653/v1/D19-5812</identifier>
<location>
<url>https://aclanthology.org/D19-5812/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>86</start>
<end>90</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine Comprehension
%A Yeh, Yi-Ting
%A Chen, Yun-Nung
%Y Fisch, Adam
%Y Talmor, Alon
%Y Jia, Robin
%Y Seo, Minjoon
%Y Choi, Eunsol
%Y Chen, Danqi
%S Proceedings of the 2nd Workshop on Machine Reading for Question Answering
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F yeh-chen-2019-flowdelta
%X Conversational machine comprehension requires deep understanding of the dialogue flow, and the prior work proposed FlowQA to implicitly model the context representations in reasoning for better understanding. This paper proposes to explicitly model the information gain through the dialogue reasoning in order to allow the model to focus on more informative cues. The proposed model achieves the state-of-the-art performance in a conversational QA dataset QuAC and sequential instruction understanding dataset SCONE, which shows the effectiveness of the proposed mechanism and demonstrate its capability of generalization to different QA models and tasks.
%R 10.18653/v1/D19-5812
%U https://aclanthology.org/D19-5812/
%U https://doi.org/10.18653/v1/D19-5812
%P 86-90
Markdown (Informal)
[FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine Comprehension](https://aclanthology.org/D19-5812/) (Yeh & Chen, 2019)
ACL