@inproceedings{takahashi-etal-2019-cler,
title = "{CLER}: Cross-task Learning with Expert Representation to Generalize Reading and Understanding",
author = "Takahashi, Takumi and
Taniguchi, Motoki and
Taniguchi, Tomoki and
Ohkuma, Tomoko",
editor = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5824/",
doi = "10.18653/v1/D19-5824",
pages = "183--190",
abstract = "This paper describes our model for the reading comprehension task of the MRQA shared task. We propose CLER, which stands for Cross-task Learning with Expert Representation for the generalization of reading and understanding. To generalize its capabilities, the proposed model is composed of three key ideas: multi-task learning, mixture of experts, and ensemble. In-domain datasets are used to train and validate our model, and other out-of-domain datasets are used to validate the generalization of our model`s performances. In a submission run result, the proposed model achieved an average F1 score of 66.1 {\%} in the out-of-domain setting, which is a 4.3 percentage point improvement over the official BERT baseline model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="takahashi-etal-2019-cler">
<titleInfo>
<title>CLER: Cross-task Learning with Expert Representation to Generalize Reading and Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Takumi</namePart>
<namePart type="family">Takahashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Motoki</namePart>
<namePart type="family">Taniguchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomoki</namePart>
<namePart type="family">Taniguchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomoko</namePart>
<namePart type="family">Ohkuma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Machine Reading for Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Fisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alon</namePart>
<namePart type="family">Talmor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robin</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minjoon</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eunsol</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danqi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our model for the reading comprehension task of the MRQA shared task. We propose CLER, which stands for Cross-task Learning with Expert Representation for the generalization of reading and understanding. To generalize its capabilities, the proposed model is composed of three key ideas: multi-task learning, mixture of experts, and ensemble. In-domain datasets are used to train and validate our model, and other out-of-domain datasets are used to validate the generalization of our model‘s performances. In a submission run result, the proposed model achieved an average F1 score of 66.1 % in the out-of-domain setting, which is a 4.3 percentage point improvement over the official BERT baseline model.</abstract>
<identifier type="citekey">takahashi-etal-2019-cler</identifier>
<identifier type="doi">10.18653/v1/D19-5824</identifier>
<location>
<url>https://aclanthology.org/D19-5824/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>183</start>
<end>190</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CLER: Cross-task Learning with Expert Representation to Generalize Reading and Understanding
%A Takahashi, Takumi
%A Taniguchi, Motoki
%A Taniguchi, Tomoki
%A Ohkuma, Tomoko
%Y Fisch, Adam
%Y Talmor, Alon
%Y Jia, Robin
%Y Seo, Minjoon
%Y Choi, Eunsol
%Y Chen, Danqi
%S Proceedings of the 2nd Workshop on Machine Reading for Question Answering
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F takahashi-etal-2019-cler
%X This paper describes our model for the reading comprehension task of the MRQA shared task. We propose CLER, which stands for Cross-task Learning with Expert Representation for the generalization of reading and understanding. To generalize its capabilities, the proposed model is composed of three key ideas: multi-task learning, mixture of experts, and ensemble. In-domain datasets are used to train and validate our model, and other out-of-domain datasets are used to validate the generalization of our model‘s performances. In a submission run result, the proposed model achieved an average F1 score of 66.1 % in the out-of-domain setting, which is a 4.3 percentage point improvement over the official BERT baseline model.
%R 10.18653/v1/D19-5824
%U https://aclanthology.org/D19-5824/
%U https://doi.org/10.18653/v1/D19-5824
%P 183-190
Markdown (Informal)
[CLER: Cross-task Learning with Expert Representation to Generalize Reading and Understanding](https://aclanthology.org/D19-5824/) (Takahashi et al., 2019)
ACL